Solving Exponential Equations when the bases are not equal.

1) Turn in hw and try number 1-3 on the SATs
2) Go over hw.
3) Graphic Organizer
4) Notes on solving exponential functions
5) little quiz
6) do your hw

PROPERTIES OF LOGARITHMS
GRAPHIC ORGANIZER

Name	Rule(s)	Example 1	Example 2
$\begin{gathered} \text { BASIC } \\ \text { LOGARITHMS } \end{gathered}$	$\log _{b} b=\quad ; \log _{b} 1=$	Simplify: $\log _{14} 14=$	Simplify: $\log _{3} 1=$
$\begin{aligned} & \text { PRODUCT } \\ & \text { RULE } \end{aligned}$	$\log _{b}(m \cdot n)=$	Condense: $\log _{5} 6+\log _{5} 7=$	Expand: $\log _{2} 63=$
QUOTIENT RULE	$\log _{b}\left(\frac{m}{n}\right)=$	Condense: $\log _{4} 84-\log _{4} 12=$	Expand: $\log 9=$
POWER RULE	$\log _{b} m^{n}=$	Condense: $2 \cdot \log _{3} 8=$	Expand: $\log _{2} 6^{x-1}=$
CHANGE OF BASE FORMULA	$\log _{b} a=$	Using a common base, evaluate the expression below.$\log _{7} 32=$	
REMEMBER: BASE 10 LOGS ARE COMMON LOGS AND WRITTEN WITHOUT A BASE! ($\log \boldsymbol{x}$)			

Name:			Date:
Topic:			Class:
Main Ideas/Questions	Notes/Examples		
WARM-UP Using a common base to solve an exponential equation.	Directions: Solve the equations below using a common base.		
	1. $5^{n+10}=25$		2. $9^{a+2}=27^{4 a-2}$
What if a common base is NOT possible?	(1) ISOLATE the exponential expression.		
	(2)	TAKE THE LOG of both sides.	
	(3)	You may need to EXPAND the log. (Use the Power Rule)	
	(4) SOLVE and CHECK FOR EXTRANEOUS SOLUTIONS.		
	*Rounded answers may not produce the exac \dagger same answer, but will be very close.		
Examples	3. $2^{x}=61$		4. $8^{m-7}=92$

Name:		Date:
Topic:		Class:
Main Ideas/Questions	Notes/Examples	
WARM-UP Using a common base to solve an exponential equation.	Directions: Solve the e 1. $5^{n+10}=25$ $\begin{aligned} & 5^{n+10}=5^{2} \\ & n+10=2 \\ & -10-10 \\ & n=-8 \end{aligned}$	using a common base. $\text { 2. } \begin{aligned} &\left(3^{2}\right)^{a+2}=22^{7 a-2} \\ &=\left(3^{3}\right)^{4 a-2} \\ & 2 a+4=12 a-6 \\ & 4=10 a-6 \\ & 10=10 a \\ & 1=a \end{aligned}$
What if a common base is NOT possible?	(1) ${ }^{\text {(1SOL }}$ ISTE the exponential expression.	
	(2) TAKE THE LOG of both sides.	
	(3) You may need to EXPAND the log. (Use the Power Rule)	
	(4) SOLVE and CHECK FOR EXTRANEOUS SOLUTIONS.	
	*Rounded answers may not produce the exact same answer, but will be very close.	
Examples	$\begin{aligned} & 3.2^{x}=61 \\ & \log _{2} 61=x \\ & \frac{\log _{61} 61}{\log ^{2}}=x \\ & 5.9307=x \end{aligned}$	$\begin{aligned} & \text { 4. } 8^{m-7}=92 \\ & \log _{8} 92=m-7 \\ & \frac{\log _{92} 92}{\log _{8}}=m \\ & 2.1745=m-7 \\ & 9.1745=m \end{aligned}$
	$\begin{gathered} 5 \cdot 4.7^{7}=148 \\ 7^{n}=37 \\ \log _{7} 37=n \\ \frac{\log _{37}}{\log 7}=n \\ 1.8556=n \end{gathered}$	$\begin{aligned} 6.4^{3 w}-5 & =3 \\ 4^{3 w} & =8 \\ \log _{4} 8 & =3 w \\ \frac{\log ^{8}}{\log ^{4}} & =3 w \\ 1.5 & =3 w \\ 0.5 & =w \end{aligned}$

	7.7 $\begin{aligned} 7-4^{x+1} & =18 \\ -4^{x+1} & =11 \\ 4^{x+1} & =-11 \\ \log _{4}(-11) & =x+1 \end{aligned}$ No Solution! * Logs cannot be negative! *	$\begin{gathered} 8.10 \cdot 5^{3 k-3}=40 \\ 5^{3 k-3}=4 \\ \log _{5} 4=3 k-3 \\ \frac{\log ^{4} 4}{\log 5}=3 k-3 \\ 0.8644=3 k-3 \\ 3.8614=3 k \\ 1.2871=k \end{gathered}$
	9. $\begin{gathered} 4 \cdot 3^{n}+15=359 \\ 4 \cdot 3^{n}=344 \\ 3^{n}=86 \\ \log _{3} 86=n \\ \frac{\log 86}{\log 3}=n \\ 4.0545=n \end{gathered}$	10. $\begin{gathered} -2 \cdot 5^{p}+7=-63 \\ -2 \cdot 5^{p}=-70 \\ 5^{p}=35 \\ \log _{5} 35=p \\ \frac{\log 35}{\log 5}=p \\ 2.2091=p \end{gathered}$
	$\text { 11. } \begin{aligned} & 5 \cdot 9^{v-1} v=181 \\ & 5 \cdot 9^{v-1}=180 \\ & 9^{v-1}=36 \\ & \log _{9} 36=v-1 \\ & \frac{\log _{36} 3}{}=v-1 \\ & \log _{9}=v-1 \\ & 1.6309=v-1 \\ & 2.6309=v \end{aligned}$	$\begin{aligned} 12.8 \cdot 11^{7 k}-3 & =213 \\ 8 \cdot 11^{7 k} & =216 \\ 11^{7 k} & =27 \\ \log _{11} 27 & =7 k \\ \log _{27} 27 & =7 k \\ \log _{11} & \\ 1.3745 & =7 k \\ 0.1964 & =k \end{aligned}$
	$\text { 13. } \begin{gathered} 16^{7 y+2}-2=82 \\ 6 \cdot 16^{7 y+2}=84 \\ 16^{7 y+2}=14 \\ \log _{16} 14=7 y+2 \\ \frac{\log 14}{\log _{16} 16}=7 y+2 \\ 0.9518=7 y+2 \\ -1.0482=74 \\ -0.1497=y \mid \end{gathered}$	$\text { 14. } \begin{gathered} 3 \cdot 8^{3-7 n}+10=94 \\ 3 \cdot 8^{3-7 n}=84 \\ 8^{3-7 n}=28 \\ \log _{8} 28=3-7 n \\ \log _{28} 28 \\ \frac{\log }{} 8 \\ 1.6025=3-7 n \\ -1.3975=-7 n \\ 0.1996=n \end{gathered}$

Name: \qquad Unit 7: Exponential \& Logarithmic Functions \square
Date: \qquad Bell: \qquad Homework 7: Solving Exponential Equations (using logs)

** This is a 2-page document **

Directions: Solve each exponential equation using logarithms.

1. $3^{x}=18$	2. $7^{y}=24$
$\log _{3} 18=x$	$\log _{7} 24=y$
$\frac{\log 18}{\log }=x$	$\frac{\log 24}{\log 7}=y$
$\log 3=x$	$\log 7$
$2.6309=x$	$1.6332=y$
3. $12^{n-3}=60$	4. $2^{3 a}=142$
$\log _{12} 60=y-3$	$\log _{2} 142=3 a$
$\log 60$	$\frac{\log 142}{\log 2}=3 a$
$\frac{\log 12}{\log }=y-3$	$\log 2$
$1.6477=y-3$	$7.1497=3 a$
$4.6477=y$	$2.3832=a$
5. $15^{3 v-5}=87$	6. $4^{8 n-2}=84$
$\log _{15} 87=3 v-5$	$\log _{4} 84=8 n-2$
$\underline{\log 87}=3 v-5$	$\underline{\log 84}=8 n-2$
$\log 15=3 v-5$	$\log 4$
$1.6491=3 v-5$	$3.1962=8 n-2$
$\begin{aligned} 6.6491 & =3 v \\ 2.2164 & =v \end{aligned}$	$\begin{aligned} & 5.1962=8 n \\ & 0.6495=n \end{aligned}$
7. $4 \cdot 10^{k}=60$	8. $16^{n}-6=45$
$10^{k}=15$	$16^{n}=51$
$\log _{10} 15=k$	$\log _{16} 51=n$
$\underline{\log 15}=k$	$\log 51$
$\overline{\log 10}$	$\log 16$
$1.1761=k$	$1.4181=n$

9. $13^{c-8}-9=17$	10. $2 \cdot 8^{5 r}=28$
11. $10^{2 x-7}-3=57$	
15. $-5 \cdot 4^{6 x}+5=-30$	12. $8^{6-4 x}+6=22$

Solve on the little piece of paper I give you:

$$
3^{x-1}+2=6
$$

