Operations on Functions

1) Let's Go Over the Homework and finish p. 3
2) Take little quiz on simplifying
radicals and re-writing the forms
3) Notes on Operations of Functions

Refresher:

If $f(x)=3 x^{2}+2 x-4$
Find f(3)

Find $f(x+1)$

Ex: Let $f(x)=3 x+2$ and $g(x)=4-5 x$

Find:

a) $f(x)+g(x)$
b) $f(x)-g(x)$
c) $f(x) * g(x)$
d) $f(x)$
$g(x)$

Try another. Find the sum, difference, product and quotient with the given.
$f(x)=x^{2}-4 \quad \mid g(x)=3 x+1$

$$
\begin{array}{l|l}
\hline f(x)=x^{2}-4 & g(x)=3 x+1 \\
\hline
\end{array}
$$

Sum
$(f+g)(x)=f(x)+g(x)$
$\left(x^{2}-4\right)+(3 x+1)$
$x^{2}-4+3 x+1$
$x^{2}+3 x-3$
Difference

$$
\begin{aligned}
& (f-g)(x)=f(x)-g(x) \\
& \left(x^{2}-4\right)=(3 x+1)
\end{aligned}
$$

$$
x^{2}-4-3 x-1
$$

$$
x^{2}-3 x-5
$$

Product

Quotient
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$

ADDING \& SUBTRACTING RADICALS

(1) SIMPLIFY all radicals.
(2) Identify radicals with the SAME INDEX and SAME RADICAND.
(3) For common radicals, add/subtract the coefficients and KEEP THE COMMON RADICAL.

1. $3 \sqrt{27}-2 \sqrt{12}$
2. $\sqrt[3]{54}-2 \sqrt[3]{2}+7 \sqrt[3]{-16}$

3. $7 \sqrt[4]{48}-2 \sqrt[4]{3}+3 \sqrt[3]{72}$
4. $10 \sqrt{28}+\sqrt[3]{-56}-4 \sqrt{175}$

Multiplying Radicals

(1) Multiply coefficients, then use the PRODUCT RULE: $\sqrt[n]{a} \cdot \sqrt[n]{b}=$
(2) SIMPLIFY the resulting radical.

$$
\begin{array}{ll}
\text { 1) } \sqrt{27} \cdot \sqrt{5} & \text { 2) } 3 \sqrt{10} \cdot-2 \sqrt{18} \\
\text { 3) } \sqrt{6 x^{4}} \cdot 5 \sqrt{8 x^{5}} & \text { 4) } \sqrt[3]{-3 a^{7} b^{4}} \cdot \sqrt[3]{36 a^{6} b^{2}}
\end{array}
$$

Try These:

$$
\begin{array}{ll}
\text { a) } \sqrt{10}(5 \sqrt{5}-2 \sqrt{2}) & \text { b) }(8-\sqrt{10})(3-\sqrt{10})
\end{array}
$$

Operations with Radical Functions
Find the sum, difference, product and quotient with the given.

$$
\begin{array}{l|l}
f(x)=5 \sqrt{2 x}+1 & g(x)=3 \sqrt{2 x}-1
\end{array}
$$

$$
\begin{array}{lc|}
\hline f(x)=5 \sqrt{2 x}+1 & g(x)=3 \sqrt{2 x}-1 \\
\text { Sum } & \text { Product } \\
(f+g)(x)=f(x)+g(x) & (f \cdot g)(x)=f(x) \cdot g(x) \\
(5 \sqrt{2 x}+1)+(3 \sqrt{2 x}-1) & (5 \sqrt{2 x}+1)(3 \sqrt{2 x}-1) \\
5 \sqrt{2 x}+1+3 \sqrt{2 x}-1 & 15(2 x)-5 \sqrt{2 x}+3 \sqrt{2 x}-1 \\
8 \sqrt{2 x}) & \text { Quotient } \\
\begin{array}{ll}
\text { Difference } \\
(f-g)(x)=f(x)-g(x) & \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} \\
(5 \sqrt{2 x}+1)-(3 \sqrt{2 x}-1) & \frac{5 \sqrt{2 x}+1}{3 \sqrt{2 x}-1} \\
5 \sqrt{2 x}+1-3 \sqrt{2 x}+1 & \\
(2 \sqrt{2 x}+2 &
\end{array}
\end{array}
$$

Operations with Rational Exponent Form

$$
f(x)=10 x^{1 / 2} \mid \quad g(x)=5 x^{1 / 2}
$$

$$
\begin{array}{|l|l|}
\hline f(x)=10 x^{1 / 2} & g(x)=5 x^{1 / 2} \\
\hline
\end{array}
$$

Sum

Difference

$$
(f-g)(x)=f(x)-g(x)
$$

$$
10 x^{\frac{1}{2}}-5 x^{\frac{1}{2}}
$$

Product

$$
\begin{aligned}
& (f \cdot g)(x)=f(x) \cdot g(x) \\
& 10 x^{\frac{1}{2}} \cdot 5 x^{\frac{1}{2}} \\
& 50 x^{\frac{1}{2}+\frac{1}{2}}=50 x
\end{aligned}
$$

Quotient
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$
$\frac{10 x^{\frac{1}{2}}}{5 x^{\frac{1}{2}}}=2 x^{\frac{1}{2}-\frac{1}{2}}=2 x^{0}=2(1)=2$

HW :wkst on Operations with Functions

