Solving Logs (logarithmic Functions) with Exponents

1)Do \#4-6 on SAT Practice.
2)Let's Go over the hw.
3)Mixed Review
4) Notes on solving Logs
5) little quiz (bigger quiz next class)
6) homework

Able tige all rights resefved
A mixed review
Date \qquad Block \qquad
Simplify. Your answer should contain only positive exponents.

1) $x^{0} y^{-5} \cdot\left(x^{3} y^{2}\right)^{-1}$
2) $\left(x^{2}\right)^{3} \cdot-y^{3}$

Solve each equation.
3) $2^{3 p}=16$
4) $5^{3 b}=5^{4}$

Solve each equation. Round your answers to the nearest ten-thousandth.
5) $-4 e^{7 x-1}-3=-11$

Expand each logarithm.
6) $\log _{5}\left(x^{4} \cdot y\right)^{5}$
7) $\log _{6}(c \sqrt{a \cdot b})$

Condense each expression to a single logarithm.
8) $5 \log _{8} w+\frac{\log _{8} u}{2}$
9) $2 \log _{6} x-4 \log _{6} y$

02017 Kuta Software LLC. All rights reserved. Madewith lnfinite Algebra 2
o 017 Kuta software LLC. All rights rescrved
A mixed review
Date \qquad Block \qquad
Simplify. Your answer should contain only positive exponents.

1) $x^{0} y^{-5} \cdot\left(x^{3} y^{2}\right)^{-1}$
2) $\left(x^{2}\right)^{3} \cdot-y^{3}$

$$
\frac{1}{y^{7} x^{3}}
$$

4) $5^{3 b}=5^{4}$
$\left\{\frac{4}{3}\right\}$

Solve each equation. Round your answers to the nearest ten-thousandth.
5) $-4 e^{7 x-1}-3=-11$

$$
0.2419
$$

Expand each logarithm.
6) $\log _{5}\left(x^{4} \cdot y\right)^{5}$
7) $\log _{6}(c \sqrt{a \cdot b})$
$20 \log _{5} x+5 \log _{5} y$

$$
\log _{6} c+\frac{\log _{6} a}{2}+\frac{\log _{6} b}{2}
$$

Condense each expression to a single logarithm.
8) $5 \log _{8} w+\frac{\log _{8} u}{2}$
9) $2 \log _{6} x-4 \log _{6} y$

$$
\log _{8}\left(w^{5} \sqrt{u}\right)
$$

$$
\log _{6} \frac{x^{2}}{y^{4}}
$$

Name:	Date:
Topic:	Class:

Main Ideas/Questions	Notes/Examples		
Logarithmic Equations TYPE $1:$ LOG $=$ LOG	(1)	CONDENSE each logarithm.	
	(2)	Use the One-to-One Property: If $\log _{b} m=\log _{b} n$, then	
	(3)	SOLVE and CHECK FOR EXTRANEOUS SOLUTIONS.	
	1. $\log _{5}(5 x+9)=\log _{5}(6 x)$		2. $\log _{2}(1-4 n)=\log _{2}(2 n+43)$
	3. 1	$\mathrm{g}_{9}(6-3 w)=\log _{9}(-2 w)$	4. $\log (y+5)+\log 4=\log 72$
	5. 3	$\log _{7} 4=\log _{7}(4 a-8)$	6. $\log _{4} 68-\log _{4} 4=\log _{4}(3 n+11)$
	7. $\frac{1}{2}$	$\log _{6} 25=\log _{6}(23-4 w)$	8. $\log _{3}(2 p-5)=2 \cdot \log _{3} 6-\log _{3} 4$

Name:			Date:
Topte:			Class:
Main Ideas/Questions	Notes/Examples		
Loganithmic Equations TYPEI: LOG = LOG	(1) CONDENSE each logarithm.		
	(2) Use the One-to-One Property: If $\log _{b} m=\log _{b} n$, then		
	(3) SOLVE and CHECK FOR EXTRANEOUS SOLUTONS.		
	$\text { 1. } \begin{array}{r} \log _{5}(5 x+9)=\log _{5}(6 x) \\ 5 x+9 \\ =6 x \\ 9 \end{array}$		$\text { 2. } \begin{aligned} \log _{2}(1-4 n) & =\log _{2}(2 n+43) \\ 1-4 n & =2 n+43 \\ 1-6 n & =43 \\ -6 n & =42 \\ n & =-7 \end{aligned}$
	3. 10 $\begin{gathered} \operatorname{og}_{9}(6-3 w)=\log _{9}(-2 w) \\ 6-3 w=-2 w \\ 6=w \end{gathered}$ No Solution! uogas capnoot be negative) $\begin{aligned} \log _{9}(3-6 \cdot 3 & =\log _{9}(-2.6) \\ \log _{f-1}(12) & =\log _{9}(-12) \end{aligned}$		$\text { 4. } \begin{gathered} \log (y+5)+\log 4=\log 72 \\ \log (y+5) \cdot 4=\log 72 \\ 4(y+5)=72 \\ 4 y+20=72 \\ 4 y=52 \\ y=13 \end{gathered}$
	5. 3$\begin{aligned} & \log _{7} 44^{3}=\log _{7}(4 a-8) \\ & 64=4 a-8 \\ & 72=4 a \\ & 18=a \end{aligned}$		$\text { 6. } \begin{aligned} \log _{4} 68-\log _{4} 4= & =\log _{4}(3 n+11) \\ \log _{4} \frac{68}{4} & =\log _{4}(3 n+11) \\ 17 & =3 n+11 \\ 6 & =3 n \\ 2 & =n \end{aligned}$
	$\text { 7. } \begin{aligned} \frac{1}{2} \cdot \log _{6} 25 & =\log _{6}(23-4 w) \\ \log _{6} 25^{1 / 2} & =\log _{6}(23-4 w) \\ 5 & =23-4 w \\ -18 & =-4 w \\ \frac{9}{2} & =w \end{aligned}$		$\text { 8. } \begin{aligned} \log _{3}(2 p-5) & =2 \cdot \log _{3} 6-\log _{3} 4 \\ \log _{3}(2 p-5) & =\log _{3} \frac{6^{2}}{4} \\ 2 p-5 & =9 \\ 2 p & =14 \\ p & =7 \end{aligned}$

	9. $\log _{4}\left(m^{2}\right)=\log _{4}(18-7 m)$		10. $\log 2+\log \left(k^{2}\right)=\log \left(k^{2}+16\right)$
TYPE 2: LOG = NUMBER	(1)	CONDENSE and ISOLATE the logarithm.	
	(2)	Write the equation in EXPONENTIAL FORM.	
	(3)	SOLVE and CHECK FOR EXTRANEOUS SOLUTIONS.	
	11. $\log _{2}(x-4)=6$		12. $\log _{3}(4 x+8)-7=-3$
	13. $\log (2 x)+\log (x-5)=2$		14. $2 \cdot \log x-\log 4=2$
	15. $\log _{6}(x+9)+\log _{6} x=2$		16. $\log (x-3)+\log x=1$

	$\text { 9. } \begin{gathered} \log _{4}\left(m^{2}\right)=\log _{4}(18-7 m) \\ m^{2}=18-7 m \\ m^{2}+7 m-18=0 \\ (m+9)(m-2)=0 \\ m=-9 \end{gathered} m=2$	$\text { 10. } \begin{gathered} \log 2+\log \left(k^{2}\right)=\log \left(k^{2}+16\right) \\ \log 2 k^{2}=\log \left(k^{2}+16\right) \\ 2 k^{2}=k^{2}+16 \\ k^{2}-16=0 \\ (k+4)(k-4)=0 \\ k=-4) k=4 \end{gathered}$
TYPE 2: $L O G=$ NUMBER	(1) CONDENSE and ISOLATE the logarithm.	
	Write the equation in EXPONENTIAL FORM.	
	SOIVE and CHECK FOR EXTRANEOUS SOLUTIONS.	
	$\text { 11. } \begin{aligned} & \log _{2}(x-4)=6 \\ & 2^{6}=x-4 \\ & 64=x-8 \\ & 72=x \end{aligned}$	$\text { 12. } \begin{gathered} \log _{3}(4 x+8)-7=-3 \\ \log _{3}(4 x+8)=4 \\ 3^{4}=4 x+8 \\ 81=4 x+8 \\ 73=4 x \\ \frac{73}{4}=x \end{gathered}$
	$\begin{aligned} & \text { 13. } \log (2 x)+\log (x-5)=2 \\ & \log (2 x)(x-5)=2 \\ & 10^{2}=2 x^{2}-10 x \\ & 0=2 x^{2}-10 x-100 \\ & 0=2\left(x^{2}-5 x-50\right) \\ & 0=\frac{2(x-10)(x+5)}{\sqrt{x=10}} \end{aligned}$	$\begin{aligned} & \text { 14. } 2 \cdot \log x-\log 4=2 \\ & \log \frac{x^{2}}{4}=2 \\ & 10^{2}=\frac{x^{2}}{4} \\ & 400=x^{2} \\ & 0=x^{2}-400 \\ & \left.0=\frac{(x+20)(x-20)}{[x-10]} x=20\right] \end{aligned}$
	$\text { 15. } \begin{array}{r} \left.\log _{6} x+9\right)+\log _{6} x=2 \\ \log _{6} x^{2}+9 x=2 \\ x^{2}+9 x=36 \\ x^{2}+9 x-36=0 \\ (x+12)(x-3)=0 \\ x-x=3 \end{array}$	16. $\begin{aligned} & \log (x-3)+\log x=1 \\ & \log x^{2}-3 x=1 \\ & 10=x^{2}-3 x \\ & 0=x^{2}-3 x-10 \\ & 0=(x-5)(x+2) \\ & x=5 \quad x \end{aligned}$

Name: \qquad Unit 7: Exponential \& Logarithmic Functions \square
Date: \qquad Bell: \qquad Homework 6: Solving Logarithmic Equations
** This is a 2-page documenta **

9. $\log _{4}\left(2 m^{3}-14 m^{2}\right)-\log _{4}(2 m)=\log _{4} 8$	10. $2 \cdot \log (x-3)=\log 25$
11. $\log _{3}(2 x-7)=4$	12. $\log _{8}(28 k-20)+15=18$

9. 1 $\begin{gathered} \log _{4}\left(2 m^{3}-14 m^{2}\right)^{-\log _{4}(2 m)=\log _{4} 8} \\ \log _{4}\left(\frac{2 m^{3}-14 m^{2}}{2 m}\right)=\log _{4} 8 \\ m^{2}-7 m=8 \\ m^{2}-7 m-8=0 \\ \frac{(m-8)(m+1)=0}{m=8} m \end{gathered}$	10. $2 \cdot \log (x-3)=\log 25$ $\begin{gathered} \log (x-3)^{2}=\log 25 \\ x^{2}-6 x+9=25 \\ x^{2}-6 x-16=0 \\ (x-8)(x+2)=0 \\ x=8 x x-2 \end{gathered}$
$\begin{array}{r} \text { 11. } \begin{array}{r} \log _{3}(2 x-7)=4 \\ 3^{4}=2 x-7 \\ 81=2 x-7 \\ 88=2 x \\ 44=x \end{array} . \end{array}$	$\begin{gathered} \text { 12. } \log _{8}(28 k-20)+15=18 \\ \log _{8}(28 k-20)=3 \\ 8^{3}=28 k-20 \\ 512=28 k-20 \\ 532=28 k \\ 19=k \end{gathered}$
$\text { 12. } \begin{aligned} & \log _{9}(15-4 n)=\frac{1}{2} \\ & 9^{1 / 2}=15-4 n \\ & 3=15-4 n \\ &-12=-4 n \\ & 3=n \end{aligned}$	$\text { 14. } \begin{gathered} \log _{2} 4+\log _{2}(c-9)=5 \\ \log _{2}(4(c-9))=5 \\ 2^{5}=4 c-36 \\ 32=4 c-36 \\ 68=4 c \\ 17=c \end{gathered}$
$\text { 15. } \begin{array}{rl} 2 \cdot \log _{4} k & =4 \\ \log _{4} k^{2} & =4 \\ 4^{4} & =k^{2} \\ 256 & =k^{2} \\ 0 & =k^{2}-256 \\ 0 & =(k+16)(k-16) \\ k \geq 16 & k=16 \end{array}$	$\text { 16. } \begin{aligned} \log _{8}\left(p^{2}+15\right) & =2 \\ 8^{2} & =p^{2}+15 \\ 64 & =p^{2}+15 \\ 49 & =p^{2} \\ 0 & =p^{2}-49 \\ 0 & =(p+7)(p-7) \end{aligned}$

quiz: On the little piece of paper

1) condense: $\log _{12} 18+3 \cdot \log _{12} 2$
2) Solve for $m: 2 \cdot \log m=\log 36$
