Solving Logs (logarithmic Functions) with Exponents

- 1)Do #4-6 on SAT Practice.
- 2)Let's Go over the hw.
- 3)Mixed Review
- 4) Notes on solving Logs
- 5) little quiz (bigger quiz next class)
- 6) homework

Algebra 2 © 2017 Kuta Software LLC. All rights r	Name		
A mixed review		Date	Block
Simplify. Your answer should contain only positive	e exponents.		
1) $x^0 y^{-5} \cdot (x^3 y^2)^{-1}$	2) $(x^2)^3 \cdot -y^3$		

Solve each equation.

3)
$$2^{3p} = 16$$
 4) $5^{3b} = 5^4$

Solve each equation. Round your answers to the nearest ten-thousandth.

5) $-4e^{7x-1}-3=-11$

Expand each logarithm.

6)
$$\log_5 (x^4 \cdot y)^5$$
 7) $\log_6 (c\sqrt{a \cdot b})$

Condense each expression to a single logarithm.

8) $5\log_8 w + \frac{\log_8 u}{2}$ 9) $2\log_6 x - 4\log_6 y$

© 2017 KutaSoftware LLC. All rights reserved. Made with Infinite Algebra 2.

Algebra 2 © 2017 Kuta Software LLC. All rights r	Name		
A mixed review		Date	Block
Simplify. Your answer should contain only positive	exponents.		
1) $x^0 y^{-5} \cdot (x^3 y^2)^{-1}$	2) $(x^2)^3 \cdot -y^3$ $-x^6 y^3$		
$\frac{1}{y^7x^3}$	$-x^6y^3$		
Solve each equation.			
3) $2^{3p} = 16$	4) $5^{3b} = 5^4$		
$\left\{\frac{4}{3}\right\}$	$\left(\frac{4}{3}\right)$		

Solve each equation. Round your answers to the nearest ten-thousandth.

5) $-4e^{7x-1} - 3 = -11$ 0.2419

Expand each logarithm.

6)
$$\log_5 (x^4 \cdot y)^5$$

20 $\log_5 x + 5 \log_5 y$
 $\log_6 c + \frac{\log_6 a}{2} + \frac{\log_6 b}{2}$

Condense each expression to a single logarithm.

8)
$$5 \log_8 w + \frac{\log_8 u}{2}$$

 $\log_8 (w^5 \sqrt{u})$
9) $2 \log_6 x - 4 \log_6 y$
 $\log_6 \frac{x^2}{y^4}$

© 2017 Kuta Software LLC. All rights reserved. Made with Infinite Algebra 2.

Name:				Date:
Topic:				Class:
Main Ideas/Questions	Notes/Examples			
Logarithmic Equations	1	CONDENSE each logarithm.		
TYPE I: LOG = LOG	2	Use the One-to-One Property	y:	If $\log_b m = \log_b n$, then
	3	SOLVE and CHECK FOR EXTRAI	N	
	1. log	$g_5(5x+9) = \log_5(6x)$		2. $\log_2(1-4n) = \log_2(2n+43)$
	3. loo	$g_9(6-3w) = \log_9(-2w)$		4. $\log(y+5) + \log 4 = \log 72$
		sg()		50, 55
	5. 3·	$\log_7 4 = \log_7(4a - 8)$		6. $\log_4 68 - \log_4 4 = \log_4 (3n + 11)$
	1			8. $\log_3(2p-5) = 2 \cdot \log_3 6 - \log_3 4$
	7. $\frac{1}{2}$	$\log_6 25 = \log_6(23 - 4w)$		

© Gina Wilson (All Things Algebra), 2015

Name:		_	Date:
Topic:			Class:
Main Ideas/Questions	Notes/Examples		
Logarithmic Equations	1	CONDENSE each logarithm.	
TYPE I: LOG = LOG	2	Use the One-to-One Property:	If $\log_b m = \log_b n$, then
	3	SOLVE and CHECK FOR EXTRAN	
	1. log	$Q_{\rm S}(5x+9) = \log_{\rm S}(6x)$	2. $\log_2(1-4n) = \log_2(2n+43)$
		5x+9 = 6x	1 - 4n = 2n + 43
		9=x 1	1 - 43
			- len=42
			N=-71
	3. log	$l_{9}(6-3w) = log_{9}(-2w)$	4. $\log(y+5) + \log 4 = \log 72$
		e-3w = -2w	$\log(y+5).4 = \log 12$
		10=W	4(4+5) = 72
		NO Solution! uses cannot be negative q (3-6.3) = logg (-2.6)	44+20=72
	100	$a(3-6\cdot3) = 100a(-2\cdot6)$	4y=52 [y=13]~
	,	$\frac{100(-12) = 100(-12)}{100(-12)}$	<u>y=13</u> *
	5. 3-	$\log_7 4 = \log_7 (4a - 8)$	6. $\log_4 68 - \log_4 4 = \log_4(3n + 11)$
		$\log_{7} 4^3 = \log_{7} (4a - 8)$	10g4 48 = 10g4 (3n+11)
		64=42-8	17=3n+11
		72=4a	6=3n
		18=a/	2=1
	7. 1	$\log_6 25 = \log_6 (23 - 4w)$	8. $\log_3(2p-5) = 2 \cdot \log_3 6 - \log_3 4$
	2	log, 251/2=log, (23 4w)	$\log_3(2p-5) = \log_3 \frac{6^2}{4}$
		5 = 23 - 4w	2p-5=9
		-18 = 4W 9 = WV	2p=14
		2-00	Gina Wilson (All Things Algebra), 20

	9. $\log_4 (m^2) = \log_4 (18 - 7m)$	10. $\log 2 + \log (k^2) = \log (k^2 + 16)$
TYPE 2:	CONDENSE and ISOLATE #	
LOG = NUMBER	2 Write the equation in EXPO	
	3 SOLVE and CHECK FOR EX 11. $\log_2(x-4) = 6$	(TRANEOUS SOLUTIONS. 12. $\log_3(4x+8) - 7 = -3$
	13. $\log(2x) + \log(x-5) = 2$	14. $2 \cdot \log x - \log 4 = 2$
	15. $\log_6(x+9) + \log_6 x = 2$	16. log (x - 3) + log x = 1 © Gina Wilson (All Things Algebra), 2015

<u>г</u>		
	9. $\log_4(m^2) = \log_4(18 - 7m)$	10. $\log 2 + \log (k^2) = \log (k^2 + 16)$
	$m^2 = 18 - 1m$	$\log 2 k^{2} = \log k^{2} + 16$
	m2+7m-18=0	$2k^2 = k^2 + 16$
	(m+9)(m-2)=0	4 ² -16=0
	~ [m=-9] [m=2 ~	(K+4)(K-4)=0
		· K=-4 K=4 ~
TYPE 2:	(1) CONDENSE and ISOLATE the log	gariihm
LOG = NUMBER	Write the equation in EXPONEN	TIAL FORM.
	3 SOLVE and CHECK FOR EXTRAN	
	11. $\log_2(x-4) = 6$	12. $\log_3(4x+8) - 7 = -3$
	$2^{b} = X - 4$	log 3(4×+8)=4
	64 = X-8	34 = 4X+8
	72 =X	81 = 4x+8
		73 = 4x
		73 = 4x $\frac{73}{4} = x$
	13. $\log(2x) + \log(x-5) = 2$	14. $2 \cdot \log x - \log 4 = 2$
	$\log (2x)(x-5) = 2$	$\log \frac{x^2}{4} = 2$
	$10^2 = 2X^2 - 10X$	•
	$0 = 2x^2 - 10x - 100$	$10^2 = \frac{\chi^2}{4}$
	$0 = 2(X^2 - 5X - 50)$	$4_{00} = \chi^{2}$ 0 = $\chi^{2} - 4_{00}$
	0=2(X-10)(X+5)	$0 = \frac{x^2 - 400}{(x + 20)(x - 20)}$
	1X=10	X=20 V
	15. $\log_{6}(x+9) + \log_{6}x = 2$.	16. $\log(x-3) + \log x = 1$
	$\log_{6} x^{2} + 9x = 2$	$\log x^2 - 3x = 1$
	$\chi^{2}+9\chi = 36$	$10 = X^2 - 3X$
	X2+9X-36=0	$0 = \chi^2 - 3\chi - 10$
	(X+12)(X-3)=0	0=(X-5)(X+2)
	X=3/	VX=5 AV
	·	

Gina Wilson (All Things Algebra), 2015

Name:		Jnit 7: Exponential & Logarithmic Functions	
	Bell: Homework 6: Solving Logarithmic Equations		
	** This is a 2-page document! **		
Directions: Solve each equa	tion. Check for extra	aneous solutions	
1. $\log_3(3x - 11) = \log_3(25 - x)$		2. $\log_7(4n-7) = \log_7(-3n)$	
3. $\log_2 75 = \log_2 3 + \log_2 (2y - 1)$)	4. 2 · log <i>m</i> = log 36	
5. log ₄ 108 – log ₄ 9 = log ₄ (7 <i>a</i> –	9)	6. $\frac{1}{3} \cdot \log_5 64 = \log_5 8 + \log_5 p$	
7. $\log(w^2 + 21) = \log(10w)$		8. $\log_2(2x) + \log_2(x-7) = \log_2(4x)$	

Nome	Unit 7: Exponential & Logarithmic Functions
	Homework 6: Solving Logarithmic Equations
** This is a 2-pag	e document! **
Directions: Solve each equation. Check for extr	
1. $\log_3(3x-11) = \log_3(25-x)$ 3x-11 = 25-x	2. $\log_7(4n-7) = \log_7(-3n)$ 4n-7 = -3n
4X - 11 = 25	-1=-70
4X = 36	
x=9 1	No solution!
	NO SOLUTION.
3. $\log_2 75 = \log_2 3 + \log_2 (2y - 1)$	4. 2 · log <i>m</i> = log 36
$\log_2 75 = \log_2(3(2y-1))$	$\log m^2 = \log 36$
75. =64-3	m ² =36
78 <i>=</i> 64	$m^2 - 36 = 0$
5	$(m+\omega)(m-\omega) = 0$
13 = 4	made m=61
5. $\log_4 108 - \log_4 9 = \log_4 (7a - 9)$	
$\log_{4} \frac{108}{9} = \log_{4} (7a-9)$	6. $\frac{1}{3} \cdot \log_5 64 = \log_5 8 + \log_5 p$ $\log_5 64^{43} = \log_5 8 \cdot p$
12= 70-9	4=80
21=7a	$\frac{4=8\rho}{\sqrt{2}=\rho}$
3=0/	
7. $\log(w^2 + 21) = \log(10w)$	8. $\log_2(2x) + \log_2(x-7) = \log_2(4x)$
$W^{2}+2I = IDW$	10g 2 (2x(x-T))= log 2(4x)
$W^2 - 10W + 21 = 0$	$2x^{2}-14x = 4x$
(W - 7)(W - 3) = 0	$2x^2 - 18x = 0$
V [W=7] [W=3] V	2x(x-9) = 0
	X=9 -
	Gina Wilson (All Things Algebra), 2015

9. $\log_4(2m^3 - 14m^2) - \log_4(2m) = \log_4 8$	10. $2 \cdot \log(x-3) = \log 25$
11. $\log_3(2x-7) = 4$	12. $\log_8(28k-20)+15=18$
13. $\log_9(15-4n) = \frac{1}{2}$	14. $\log_2 4 + \log_2 (c - 9) = 5$
15. $2 \cdot \log_4 k = 4$	16. $\log_8 (p^2 + 15) = 2$

© Gina Wilson (All Things Algebra), 2015

9. $\log_{4}(2m^{3}-14m^{2}) - \log_{4}(2m) = \log_{4} 8$ $\log_{4}\left(\frac{2m^{3}-14m^{2}}{2m}\right) = \log_{4} 8$ $m^{2}-7m = 8$ $m^{2}-7m - 8 = 0$ (m-8)(m+1) = 0 $\sqrt{M=8}$	10. $2 \cdot \log(x-3) = \log 25$ $\log (x-3)^2 = \log 25$ $x^2 - 6x + 9 = 25$ $x^2 - 6x - 16 = 0$ (x-8)(x+2) = 0 $\overline{X=8}$
11. $\log_3(2x-7) = 4$ $3^{-1} = 2x - 7$ 8 = 2x - 7 88 = 2x 44 = x	12. $\log_{8}(28k-20)+15=18$ $\log_{8}(28k-20)=3$ $8^{3}=28k-20$ 512=28k-20 532=28k 19=k V
12. $\log_9(15-4n) = \frac{1}{2}$ $q^{1/2} = 15-4n$ 3 = 15-4n -12 = -4n 3 = n	14. $\log_2 4 + \log_2 (c-9) = 5$ $\log_2 (4(c-9)) = 5$ $2^5 = 4c-36$ 32 = 4c-36 68 = 4c 17 = c
$15. 2 \cdot \log_{4} k = 4$ $\log_{4} k^{2} = 4$ $4^{4} = k^{2}$ $256 = k^{2}$ $0 = k^{2} - 256$ $0 = (k + 16)(k - 16)$ $\boxed{k = 16} v$	16. $\log_{B}(p^{2}+15) = 2$ $8^{2} = p^{2}+15$ $64 = p^{2}+15$ $49 = p^{2}$ $0 = p^{2}-49$ 0 = (p+1)(p-1) $\sqrt{p=-1}$ p=7 Gina Walson (All Things Algebra), 2015

- quiz: On the little piece of paper 1) condense: $\log_{12} 18 + 3 \cdot \log_{12} 2$
- 2) Solve for m: $2 \cdot \log m = \log 36$