Welcome Back.

1) SAT questions
2) Do the Math Lab to learn how to graph an Exponential Functions.
3) Notes
4) Homework

Name:
 Period:
 Date

Math Lab: Graphing Exponential Functions

Exponential functions are ones in which the variable is in the exponent. As with other types of functions, there is a parent graph for exponential functions ($y=b^{x}$ where b is the base) and we can create other similarly shaped graphs using transformations.

Complete the tables of ordered pairs below for each of the following parent graphs, then use the points to sketch each graph on the coordinate plane below in the given colors.

$y=2^{x}($ BLACK $)$	
-2	
-1	
0	
1	
2	
3	

$y=3^{x}($ RED $)$	
-2	
-1	
0	
1	
2	
3	

$y=4^{x}($ BLUE $)$	
-2	
-1	
0	
1	
2	
3	

Is there ever any value of x that will make $y=0$?

Is there ever any value of x that will make y negative?

Find the domain and range for each parent graph.

$y=2^{x}$ (BLACK)	$y=3^{x}(\mathrm{RED})$	$y=4^{x}$ (BLUE)
Domain:	Domain:	Domain:
Range:	Range:	Range:
Horizontal Asymptote at:	Horizontal Asymptote at:	Horizontal Asymptote at:

What 2 points did all 3 graphs have in common?

What if the base was a number between 0 and 1? What do you think would happen?

$E x: f(x)=(1 / 2)^{x}$

3. $f(x)=\left(\frac{1}{2}\right)^{x}$

Domain: \qquad
Range: \qquad
End Behavior:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
y-intercept: \qquad

Asymptote \qquad
4. $f(x)=\left(\frac{2}{3}\right)^{x}$

Domain: \qquad

Range: \qquad
End Behavior:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
y-intercept: \qquad

Asymptote: \qquad
5. $f(x)=\left(\frac{5}{2}\right)^{x}$

Domain: \qquad

Range: \qquad
End Behavior:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
y-intercept: \qquad

Asymptote: \qquad

Q Gina Wilson (All Things Algebra), 2015

Name:	Date:
Topic:	Class:

Directions: (a) Identify the parent function, and (b) describe the transformations.

1. $f(x)=3^{x}+5$
a) $f(x)=3^{x}$
b) $u_{p} 5$
2. $f(x)=-\left(\frac{4}{3}\right)^{x+2}+7$
a) $f(x)=(4 / 3)^{x}$
b) reflect over x, left 2 , up 7
3. $f(x)=2 \cdot\left(\frac{1}{4}\right)^{x-1}$
a) $f(x)=(1 / 4)^{x}$
b) vert. stretch $\times 2$, right 1
4. $f(x)=\frac{1}{2} \cdot 5^{x-4}-2$
a) $f(x)=5^{x}$
b) vert. compression by $1 / 2$, right 4, down 2

Directions: Graph each function and identify its key characteristics.

8. $f(x)=\left(\frac{3}{2}\right)^{x-4}-5$

9. $f(x)=-2 \cdot 4^{x-2}$

Domain: \qquad
Range: \qquad
End Behavior:
As $x \rightarrow \infty, \quad f(x) \rightarrow$ \qquad

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
y-intercept: \qquad
Asymptote: \qquad
Domain: \qquad
Range: \qquad

End Behavior:
As $x \rightarrow \infty, \quad f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
y-intercept: \qquad

Asymptote: \qquad

Domain: \qquad

Range: \qquad

End Behavior:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
y-intercept: \qquad
Asymptote: \qquad

Domain: \qquad
Range: \qquad
End Behavior:
As $x \rightarrow \infty, \quad f(x) \rightarrow$ \qquad

As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
y-intercept: \qquad
Asymptote: \qquad

Q Gina Wilson (All Things Algebra), 2015

Do your homework!

Name: \qquad Unit 7: Exponential \& Logarithmic Functions \square
Date: \qquad Bell: \qquad Homework 1: Graphing Exponential Functions
** This is a 2-page document! **
Directions: Classify each function as an exponential growth or an exponential decay. Sketch the curve.

1. $f(x)=\frac{1}{2} \cdot 5^{x}$
2. $f(x)=\left(\frac{6}{5}\right)^{x}$
3. $f(x)=4 \cdot\left(\frac{3}{8}\right)^{x}$

Directions: (a) Identify the parent function and (b) describe the transformations.
4. $f(x)=\left(\frac{4}{5}\right)^{x+2}$
5. $f(x)=-3 \cdot 2^{x-1}+7$

Directions: Graph each function and identify its key characteristics.
6. $f(x)=3^{x-2}-7$

Domain: \qquad
Range: \qquad
End Behavior:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$ \qquad
y-intercept: \qquad
Asymptote: \qquad
7. $f(x)=\left(\frac{1}{2}\right)^{x+4}-3$

Domain: \qquad
Range: \qquad
End Behavior:
As $x \rightarrow \infty, f(x) \rightarrow$ \qquad
As $x \rightarrow-\infty, f(x) \rightarrow$
y-intercept: \qquad
Asymptote: \qquad
Q Gina Wilson (All Things Algebra), 2015

Name: \qquad Unit 7: Exponential \& Logarithmic Functions \square
Date: \qquad Bell: \qquad Homework 1: Graphing Exponential Functions
** This is a 2-page document! **
Directions: Classify each function as an exponential growth or an exponential decay. Sketch the curve.

1. $f(x)=\frac{1}{2} \cdot 5^{x}$

2. $f(x)=\left(\frac{6}{5}\right)^{x}$

3. $f(x)=4 \cdot\left(\frac{3}{8}\right)^{x}$

Directions: (a) Identify the parent function and (b) describe the transformations.
4. $f(x)=\left(\frac{4}{5}\right)^{x+2}$
a) $f(x)=(4 / 5)^{x}$
b) $l e f+2$
5. $f(x)=-3 \cdot 2^{x-1}+7$
a) $f(x)=2^{x}$
b) reflected over x, right 1 , vert. stretch by 3, up 7

Directions: Graph each function and identify its key characteristics.

