Unit 4: 1/31/17 or 2/1/17

- 1. Review of Properties of Exponents
- 2. Simplifying Expressions
- 3. Converting between Rational and Exponent Form

Properties of Exponents

Let a and b be real numbers and let m and n be integers.

Product of Powers Property $a^m \cdot a^n = a^{m+n}$ Power of a Power Property $\left(a^{m}\right)^{n}=a^{mn}$ Power of a Product Property $(ab)^m = a^m b^m$ Negative Exponent Property $a^{-m} = \frac{1}{a^m}$ $a \neq 0$ Zero Exponent Property $a^0 = 1$ $a \neq 0$ Quotient of Powers Property $\frac{a^m}{a^n} = a^{m-n}$ $a \neq 0$ Power of a Quotient Property $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$ $b \neq 0$

$$a^{m} \bullet a^{n} = a^{m+n}$$

$$(a^{m})^{n} = a^{mn}$$

$$(ab)^{m} = a^{m}b^{m}$$

$$a^{-m} = \frac{1}{a^{m}} \qquad a \neq 0$$

$$a^{0} = 1 \qquad a \neq 0$$

$$\frac{a^{m}}{a^{n}} = a^{m-n} \qquad a \neq 0$$

$$(\frac{a}{b})^{m} = \frac{a^{m}}{b^{m}} \qquad b \neq 0$$

Properties of Exponents Worksheet

Name

Evaluate the expression.

1.
$$4^2 \cdot 4^4$$

2.
$$(5^{-2})^3$$

3.
$$\frac{5^2}{5^5}$$

4.
$$\left(\frac{3}{7}\right)^3$$

5.
$$\frac{2^2}{2^{-9}}$$

6.
$$(-9)(-9)^3$$

Simplify the expression.

7.
$$a^6 \cdot a^3$$

8.
$$(x^5)^2$$

9.
$$(4a^2b^3)^5$$

10.
$$\frac{x^8}{x^6}$$

11.
$$\frac{x^5}{x^8}$$

12.
$$\frac{x^6}{x^6}$$

$$13. \left(\frac{4a^3}{2b^4}\right)^2$$

14.
$$(2^3x^2)^5$$
 15. $(x^4y^7)^{-3}$

15.
$$(x^4y^7)^{-3}$$

16.
$$\frac{x^{11}y^{10}}{x^{-3}y^{-1}}$$

17.
$$-3x^{-4}y^0$$

18.
$$\frac{5x^3y^9}{20x^2y^{-2}}$$

19.
$$\frac{x^5}{x^{-2}}$$

20.
$$\frac{x^5y^2}{x^4y^0}$$

21.
$$(x^3)^0$$

22.
$$(10x^5y^3)^{-3}$$

23.
$$\frac{x^{-1}y}{xy^{-2}}$$

24.
$$(4x^2y^5)^{-2}$$

25.
$$\frac{2x^2y}{6xy^{-1}}$$

26.
$$\frac{xy^9}{3y^{-2}} \bullet \frac{-7y}{21x^5}$$

26.
$$\frac{xy^9}{3y^{-2}} \cdot \frac{-7y}{21x^5}$$
 27. $\frac{12xy}{7x^4} \cdot \frac{7x^5y^2}{4y}$

Properties of Exponents Worksheet Name______

Evaluate the expression.

1.
$$4^{2} \cdot 4^{4} + 4^{6} = 4096$$
2. $(5^{-2})^{3} \cdot 5^{-6} = \frac{1}{15625}$
3. $\frac{5^{2}}{5^{5}} = \frac{1}{5^{3}} = \frac{1}{125}$

4.
$$\left(\frac{3}{7}\right)^3 \frac{27}{343}$$

5.
$$\frac{2^2}{2^{-9}} = 2^{11} = 2048$$

4.
$$\left(\frac{3}{7}\right)^3 \frac{27}{243}$$
 5. $\frac{2^2}{2^{-9}} = 2^{11} = 2048$ 6. $(-9)(-9)^3 = (-9)^4 = 6561$

Simplify the expression.

7.
$$a^6 \cdot a^3 = a^9$$

8.
$$(x^5)^2 = x^{10}$$

Simplify the expression.
7.
$$a^6 \cdot a^3 = a^9$$
 8. $(x^5)^2 = x^{10}$ 9. $(4a^2b^3)^5 = 4^5a^{10}b^{15}$

10.
$$\frac{x^8}{x^6} = \chi^2$$

11.
$$\frac{x^5}{x^8} = x^{-3}$$

10.
$$\frac{x^8}{x^6} = x^2$$
 11. $\frac{x^5}{x^8} = x^{-3}$ 12. $\frac{x^6}{x^6} = x^6 = 1$

13.
$$\left(\frac{4a^3}{2b^4}\right)^2 = \frac{16a^6}{4b^8} = 4a^6 = 4a^6 = 14$$
. $\left(2^3x^2\right)^5 = 2^{15}x^{10}$

$$= 32,768 \times 10^{15}$$
15. $\left(x^4y^7\right)^{-3} = x^{-12}y^{-21}$

15.
$$(x^4y^7)^{-3} = \chi^{-12}y^{-2}$$

16.
$$\frac{x^{11}y^{10}}{x^{-3}y^{-1}} = x^{14}y^{1}$$

17.
$$-3x^{-4}y^0$$
 $-3x^{-4}$

16.
$$\frac{x^{11}y^{10}}{x^{-3}y^{-1}} = x^{14}y^{11}$$
 17. $-3x^{-4}y^{0}$ 18. $\frac{5x^{3}y^{9}}{20x^{2}y^{-2}} = \frac{xy^{11}}{4}$

19.
$$\frac{x^5}{x^{-2}} = x^7$$

19.
$$\frac{x^5}{x^{-2}} = x^7$$
 20. $\frac{x^5y^2}{x^4v^0} = x^2$ 21. $(x^3)^0 = 1$

21.
$$(x^3)^0 = 1$$

22.
$$(10x^{5}y^{3})^{-3} = 10 \times 4 23$$
. $\frac{x^{-1}y}{xy^{-2}} = \frac{4^{3}}{x^{2}}$ 24. $(4x^{2}y^{5})^{-2} = \frac{1}{16x^{4}y^{10}}$

24.
$$(4x^2y^5)^{-2} = \frac{1}{16x^4y^{10}}$$

25.
$$\frac{2x^2y}{6xy^{-1}}$$

$$26. \ \frac{xy^9}{3y^{-2}} \cdot \frac{-7y}{21x^5}$$

25.
$$\frac{2x^2y}{6xy^{-1}}$$
 26. $\frac{xy^9}{3y^{-2}} \cdot \frac{-7y}{21x^5}$ 27. $\frac{3}{12xy} \cdot \frac{7x^5y^2}{4y} = \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} = \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} = \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} = \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} = \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} \cdot \frac{3}{12xy} = \frac{3}{12xy} = \frac{3}{12xy} \cdot \frac{3}{12xy} = \frac{3}$

$$\frac{-1}{4} \times y^{10} y^{2} = -\frac{y^{12}}{9 x^{4}}$$

Properties of Exponents Worksheet

Name

Evaluate the expression.

1.
$$4^2 \cdot 4^4$$

2.
$$(5^{-2})^3$$

3.
$$\frac{5^2}{5^5}$$

4.
$$\left(\frac{3}{7}\right)^3$$

5.
$$\frac{2^2}{2^{-9}}$$

6.
$$(-9)(-9)^3$$

Simplify the expression.

7.
$$a^6 \cdot a^3$$

8.
$$(x^5)^2$$

9.
$$(4a^2b^3)^5$$

10.
$$\frac{x^8}{x^6}$$

11.
$$\frac{x^5}{x^8}$$

12.
$$\frac{x^6}{x^6}$$

$$13. \left(\frac{4a^3}{2b^4}\right)^2$$

14.
$$(2^3x^2)^5$$
 15. $(x^4y^7)^{-3}$

15.
$$(x^4y^7)^{-3}$$

16.
$$\frac{x^{11}y^{10}}{x^{-3}y^{-1}}$$

17.
$$-3x^{-4}y^0$$

18.
$$\frac{5x^3y^9}{20x^2y^{-2}}$$

19.
$$\frac{x^5}{x^{-2}}$$

20.
$$\frac{x^5y^2}{x^4y^0}$$

21.
$$(x^3)^0$$

22.
$$(10x^5y^3)^{-3}$$

23.
$$\frac{x^{-1}y}{xy^{-2}}$$

24.
$$(4x^2y^5)^{-2}$$

25.
$$\frac{2x^2y}{6xy^{-1}}$$

26.
$$\frac{xy^9}{3y^{-2}} \bullet \frac{-7y}{21x^5}$$

26.
$$\frac{xy^9}{3y^{-2}} \cdot \frac{-7y}{21x^5}$$
 27. $\frac{12xy}{7x^4} \cdot \frac{7x^5y^2}{4y}$

Simplify the following:

$$(\sqrt{4})^2$$

$$(\sqrt{10})^2$$

Name:			Date:	Date:		
Topic: Converting Between Radical and Exponents			Block:	Block:		
Main Ideas/Questions	Notes/Examples	3				
Warm-Up	Perfect Squares:					
List the perfect squares, cubes, and fourths.	Perfect Cubes:					
	Perfect Fourths:					
Parts of	The n^{th} root of	f a real number, \boldsymbol{a} , \boldsymbol{a}	can be written as th	e radical expression $\sqrt[n]{a}$		
a Radical		$\longrightarrow \widehat{n} $				
		-	a			
	*If there is no index , it is assumed that					
Number	Give ALL POSSIBLE ROOTS to the radicals below.					
of Roots	$\sqrt{16} =$	$\sqrt{121} =$	$\sqrt{289} =$	$\sqrt{\frac{4}{25}} =$		
	3√8 =	$\sqrt[3]{343} =$	$\sqrt[3]{-125} =$	$\sqrt[3]{-\frac{1}{27}} =$		
	∜ 1 =	⁴ √2,401 =	4 √4,096 =	$\sqrt[4]{\frac{81}{16}} =$		
	Index	Radicand	Type of Roots	# of Roots		
	Even	Positive				
	Odd	Positive				
	Odd	Negative				
	★ Even	Negative				
Simplifying	*If a radical has more than one root, the radical sign indicates only the principal, or positive, root.					
Radicals	1. √117	maicales crity inc	2. 4√320	ve, 100i.		
	3. 2 ³ √48		4. 3 ³ √108			
			- 1 TO 25 (27)			

	5. ³ √-250	6. 6 ³ √−2	
	7. 3 ⁴ √162	8. 5∜2,592	
Radicals with	Square Roots Exponents must be	Cube Roots Exponents must be	4 th Roots Exponents must be
Variables	multiples of! 9. $\sqrt{32x^4y^9}$	multiples of! 10. √324 <i>a</i> ³ <i>b</i>	multiples of!
	11. $\sqrt[3]{216m^3n^6}$	12. $\sqrt[3]{56r^8s^4}$	
	13. $\sqrt[3]{-64x^{10}y^{21}}$	14. ³ √-81p ²	q^{12}
	15. $\sqrt[4]{w^4v^{17}}$	16. ⁴ √48 <i>m</i> ⁸ <i>n</i>	3
	17. $\sqrt[4]{625c^{23}d^{11}}$	18. ⁴ √(y+3)	8

Name: Topic:			Date: Class:		
RATIONAL	Expressions with rational exponents can be rewritten as radicals using the following rules:				
EXPONENTS	Exponential Form Meaning		Radical Form		
EXI OTTENTO	$a^{\frac{1}{n}}$	The n^{th} root of a	$a^{\frac{1}{n}} =$		
	$a^{\frac{m}{n}}$	The n^{th} root of a , rate to the m^{th} powe			
	Directions: Write ed	ach expression in radi	cal form. Simplify if needed.		
Converting between Exponential & Radical Form	1. $x^{\frac{1}{4}}$	2. $(15n)^{\frac{1}{2}}$	3. 24 ^{1/3}		
	4. $7^{\frac{2}{3}}$	5. $k^{\frac{7}{2}}$	6. 3 ⁵ / ₄		
	7. $(ab)^{\frac{3}{4}}$	8. $(-6x)^{\frac{2}{3}}$	9. $7(12w)^{\frac{1}{2}}$		
	Directions: Write ed	ach expression in exp e	onential form.		
	10. ³ √16	11. \sqrt{xy}	12. ⁴ √8 <i>w</i>		
	13. ³ √11 ²	14. ⁴ √k ⁵	15. $\left(\sqrt{3m}\right)^7$		
	16. (⁴ √−2 <i>a</i>) ⁵	17. $\sqrt{10^5 a^3 b}$	18. $\sqrt[3]{9x^7y^4}$		

Simplifying	(1) Rewrite all radicals in e	exponential form.		
Expressions				
with Rational Exponents	3 Write your answer as a radical in simplest form. Rationalize if ne			
	19. $x^{\frac{1}{3}} \cdot x^{\frac{4}{3}}$	20. $p^{\frac{1}{4}} \cdot p^{\frac{3}{2}}$		
	21. $\frac{m^{\frac{5}{2}}}{m^{\frac{7}{4}}}$	22. $\left(\frac{1}{a^3}\right)^{\frac{5}{2}}$		
	23. $\left(32^{\frac{1}{2}}\right)^{\frac{1}{2}}$	24. $(8x^2)^{\frac{2}{3}}$		
	25. 100 ^{-1/2}	26. $16^{\frac{2}{3}} \cdot 16^{-\frac{1}{3}}$		
	27. (-216) ^{-1/3}	28. $\left(\frac{112}{7}\right)^{-\frac{1}{4}}$		
	29. ³ √v · √v	30. ⁴ √r ³ ·√r		
	31. $\frac{4}{\sqrt[3]{4}}$	32. $\frac{\sqrt{7^3}}{\sqrt{7}}$		
	33. $\sqrt[4]{x^{10}}$	34. ⁴ √25 <i>m</i> ²		

Date:	Date: Bell:		4: Rational Exponents
Directions: Rewrit	te each expression in radical	form. Simplify if r	needed.
1. $28^{\frac{1}{2}}$	2. $2^{\frac{4}{3}}$		3. $x^{\frac{5}{4}}$
			9
4. $(256x)^{\frac{1}{4}}$	5. $(mn)^{\frac{7}{2}}$		6. $(-2a)^{\frac{4}{3}}$
Directions: Rewrit	te each expression in expone	ntial form.	
7. $\sqrt[4]{10^3}$	8. √3 <i>ab</i>	9. $(\sqrt[3]{2w})^5$	10. $\sqrt[4]{18x^9y^2}$
		2 2	
	fy each expression. Give fina	al answers in sim	plest radical form.
11. $9^{\frac{1}{2}} \cdot 9^{\frac{5}{2}}$	$\frac{7}{x^3}$		13. $\left(28^{\frac{3}{5}}\right)^{\frac{5}{6}}$
	12. $\frac{\frac{7}{x^3}}{\frac{2}{x^3}}$		13. (28°)
14. (-64) ^{-1/3}	15. 45 ⁻³ .45 ²	5	$(48)^{-\frac{1}{4}}$
14. (-64) ^{-1/3}	15. $45^{-\frac{3}{2}} \cdot 45^2$		16. $2\left(\frac{48}{3}\right)^{\frac{1}{4}}$
14. (-64) ^{-1/3}	15. $45^{-\frac{3}{2}} \cdot 45^2$		16. $2\left(\frac{48}{3}\right)^{\frac{1}{4}}$
14. (-64) ^{-1/3}	15. $45^{-\frac{3}{2}} \cdot 45^2$		16. $2\left(\frac{48}{3}\right)^{\frac{1}{4}}$
			,
	15. $45^{\frac{3}{2}} \cdot 45^2$		16. $2\left(\frac{48}{3}\right)^{\frac{1}{4}}$ 19. $\frac{m}{\sqrt[4]{m}}$
			,
14. $(-64)^{-\frac{1}{3}}$ 17. $\sqrt[4]{p} \cdot \sqrt{p^3}$,
17. ∜p ·√p³	18. $\frac{\sqrt[3]{24^4}}{24}$		19. $\frac{m}{\sqrt[4]{m}}$
17. ∜p ·√p³			,
	18. $\frac{\sqrt[3]{24^4}}{24}$		19. $\frac{m}{\sqrt[4]{m}}$

			¬ı			
Name:			Date:			
Topic:		Class:				
Main Ideas/Questions	Notes/Examples					
Warm-Up	Perfect Squares:	1,4,9,16	25, 36, 49, 64, 81, 100,			
List the perfect squares, cubes, and fourths.	Perfect Cubes: 1, 8, 27, 64, 125, 216, 343, 512, 729,					
	Perfect Fourths:	1, 16, 81, 25	56, 625, 1296,	2401, 4096,		
Parts of	The nth root of	a real number, a, c	can be written as the ro	adical expression $\sqrt[n]{a}$		
a Radical	lind	<u>ex</u> → n/(a = a	cal sign		
		V		icand		
			t is assumed that <u>N=</u>			
Number	G	ive ALL POSSIBLE R	OOTS to the radicals	OTS to the radicals below.		
of Roots	√16 = ± 4	$\sqrt{121} = \frac{+}{-}11$	√289 = 217	$\sqrt{\frac{4}{25}} = \frac{12}{5}$		
2	∛ 8 = 2	3/343 = [−] 1	3 √-125 = -5	$\sqrt[3]{-\frac{1}{27}} = -\frac{1}{3}$		
	∜ 1 ≥	√2,401 = <u>1</u>	∜ 4,096 = ÷8	$\sqrt[4]{\frac{81}{16}} = \pm \frac{3}{2}$		
4	Index	Radical	Type of Roots	# of Roots		
	Even	Positive	real	2 (±)		
	Odd	Positive	real	1 (+)		
	Odd	Negative	real	1 (-)		
	★ Even	Negative	imag	2(±)		
Simplifying	*1f	a radical has more	than one root, the rac	dical sign		
Radicals	1. √117		2. 4√320			
	V9 113	-[2[=]	4.56			
	y 1 113	= 3/13	4.8 15	= 32 15		
	3. 2 ∛ 48		4. 3 ∛108			
	2:38 36		3.327 34	[0.7]		
	2.2 36	= 436	3.3 14	= 934		
		-92-		Gine Wilson (All Things Algebra), 2025		

Name:		De	ite:
Topic:		Cta	ass:
Main Ideas/Questions	Notes/Examples	×1H	
RATIONAL		exponents can be g the following rules:	
EXPONENTS	Exponential Form	Meaning	Radical Form
EXI OILEITO	$a^{\frac{1}{n}}$	The n th root of a	$a^{\frac{1}{a}} = \sqrt[n]{a}$
	a ^m	The n th root of a, rais to the m th power	
Cara conditions	Directions: Write ec	ach expression in radio	al form. Simplify if needed.
between Exponential & Radical Form	Exponential & 45		3. 24 ^{1/3} = 3/24 = 3/8 · 3/3 = 23/3
	4. 7 3 72 3 72 3 49	5. k ² = K ³ V K	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	7. $(ab)^{\frac{3}{4}}$ = $\sqrt[4]{(ab)^3}$ = $\sqrt[4]{a^2b^2}$	8. $(-6x)^{\frac{2}{3}}$ $= \sqrt[3]{(6x)^{2}}$ $= \sqrt[3]{36x^{2}}$	9. 7(12w) ^{1/2} = 7 \(\sqrt{12} \two \) = 7 \(\sqrt{4} \sqrt{3} \two \) = (14 \(\sqrt{3} \two \)
		sch expression in expo	
	10. \$\frac{16}{3}	$= (xy)^{1/2}$	12. 38w (8w) 14
	13. $\sqrt[3]{11^2}$ = $\left(1 \right)^{2/3}$	14. \$\frac{4\k^3}{(k)^5/4}	15. $(\sqrt{3m})^7$ = $(3m)^{7/2}$
	16. $(\sqrt[4]{-2a})^5$ = $[(-2a)^{5/4}]$	17. $\sqrt{10^5 a^3 b}$ $= (10^5 a^3 b)$	$\frac{18. \sqrt[3]{9x^2y^4}}{\sqrt[3]{9x^2y^4}} = \sqrt{(9x^7y^4)^{1/3}}$ Gina Wilson (All Things Algebra), 2015

Simplifying	Rewrite all radicals in exponent	Rewrite all radicals in exponential form.			
Expressions	2 Use the exponent rules to simple	y the expression.			
with Rational Exponents		n simplest form. Rationalize if needed.			
Equians	19. $x^{\frac{1}{3}} \cdot x^{\frac{4}{3}} = \chi^{5/3}$ = $\chi^{3/3} \cdot \chi^{2/3}$	20. pt . pt = p 1/4 = p44 · p3/4			
		$= \rho \sqrt[4]{\rho^3}$			
	$21. \frac{m^{\frac{5}{2}+1}}{m^{\frac{7}{4}}} = m^{\frac{3}{4}}$	22. $\left(\frac{1}{a^3}\right)^{\frac{5}{2}} = A^{\frac{5}{4}}$			
	- Om-	= 605			
	23. $\left(32^{\frac{1}{2}}\right)^{\frac{1}{2}} = 32^{\frac{1}{4}}$	24. $(8x^2)^{\frac{2}{3}} = 8^{\frac{2}{3}} \times {}^{4/3}$			
	= 432 = 242	= 3 64 x 4 = 3 64 x 3 3 x = 4 x 3 x			
	25. $100^{-\frac{1}{2}} = \frac{1}{\sqrt{100}}$	26. $16^{\frac{2}{3}} \cdot 16^{\frac{1}{3}} = 16^{\frac{1}{3}}$			
	= 10	= 3/16 = 3/8 3/2 = 23/2			
	27. $(-216)^{-\frac{1}{3}} = \frac{1}{\sqrt[3]{-216}}$	28. $\left(\frac{112}{7}\right)^{-\frac{1}{4}} = \left(\frac{7}{312}\right)^{\frac{1}{4}}$			
	= 1	=(1/16)14 = 1			
	29. V. V = V13. V12	30. \$\frac{1}{7^3} \sqrt{r} = \gamma^3 14 \cdot \gamma^1/2			
	= V ⁵ /6	= r ^{5/4} = r ^{4/4} · 5 ^{1/4}			
	31. $\frac{4}{\sqrt[4]{4}} = \frac{4}{\sqrt[4]{3}} = \sqrt{2/3}$	$\frac{= Y Y }{32. \frac{\sqrt{7^3}}{\sqrt{7}} = \frac{7^{\frac{3}{2}}/2}{7^{\frac{3}{2}}/2} = 7^{\frac{2}{2}}/2$			
	= 3/16	√5 7½ = 7½ -[¬]			
	=232	-11			
	33. \$\sqrt{x^{10}} = \times^{10/4} = \times^{5/2}	34. $\sqrt[4]{25m^2} = 25^{14} \cdot m^{2}$ = $(5^2)^{1/4} \cdot m^{1/2}$			
	$= \chi^{4/2} \cdot \chi^{4/2}$ $= \chi^2 \sqrt{\chi}$	= 5 ¹ / ₂ · m ¹ / ₂ = √5m			
	10101	Gina Wilson (All Things Algebra), 2015			

Name:			Unit 6: Radi	cal Function	ons
Date:		Bell:	Homework	4: Ration	al Exponents
Directions: Rewrite e	ach expres	ssion in radica	form. Simplify if	7	
1. $28^{\frac{1}{2}} = \sqrt{28}$		2. 2 = 3	24	3. x4	= 41x5
=47		e 3	23.3/2		= 7x4. 7x
= 2 1			232		= \$\frac{1}{\sqrt{1}}\sqrt{1}\sqrt{1} = \frac{1}{\sqrt{1}}\sqrt{1}
4. $(256x)^{\frac{1}{4}} = 4\sqrt{256x}$	(5. $(mn)^{\frac{7}{2}} =$		6. (-2a)	= 3/(-20)4
= 4 3x			(mn) Vmn		= 3 16a+
			ที่กั งพก		=38a3 \$72a = 2a372a
Directions: Rewrite e	ach expres	ssion in expon	ential form.		
7. \$103	8. \3ab	1/2	9. (³ / _{2w}) ^s	n	10. \$\frac{418x^9y^2}{141}
=(10)-1	= (3	ab) 1/2	9. $(\sqrt[3]{2w})^5$		= ((18x9y2)")4
·—	1		1		
Directions: Simplify e				nplest ra	dical form.
11. 9 2. 9 = 0 1/2		12. $\frac{x^{\frac{7}{3}}}{x^{\frac{2}{3}}}$ =	x ^{5/3}	13. (285) ² = 28 ls
=93		, ² =	3 x5		= 28"/2
= 1729			***		= \28
	,		3 V2 3 V2 = X 3 V2		= 45 = 25
14. (-64) = = 1-64)	₹ 1 3	15. 45 ⁻³ .45 ²	= 45 1/2	16. 2	$\left(\frac{8}{3}\right)^{\frac{1}{4}} = 2\left(\frac{1}{16}\right)^{1/4}$
- 1	,		= 145	(3	= 2 (1/2)
J-64			= 19 15		-[1]
=======================================	-/		= 3/5		<u>"U</u>
17. $\sqrt[4]{p} \cdot \sqrt{p^3} = \rho^{1/4} \cdot ($	25/2	18. 1/24 24	= 24 ⁴¹³ 24	19. m/d/m	$=\frac{m.44}{m}=m.3/4$
= P 14	371		= 24 1/3	5900 3-0.	
= p ⁴ /4.	p //	= 3 24	= 3/8 3/3		= 7 m3
= [P	Jb3		= 233	4	- (A) . (b) '14
$20. \frac{16}{\sqrt[4]{16^3}} = \frac{16}{16^{3/4}}$	= 1644	21. \$\square a^2 b^{14} :	=(a2b17)17	22. ∜36	= (36W6) 14 = 12.0014
10	= 2	=	a12 b 12		= 6 1/2 W 3/2
		:	b'vab		
					Gina Wilson (All Things Algebra), 2015
					and same has simile sufferiels with

