Unit 4: 1/31/17 or 2/1/17

1. Review of Properties of Exponents
2. Simplifying Expressions
3. Converting between Rational and Exponent Form

Properties of Exponents

Let a and b be real numbers and let m and n be integers.
Product of Powers Property

$$
a^{m} \cdot a^{n}=a^{m+n}
$$

Power of a Power Property
$\left(a^{m}\right)^{n}=a^{m n}$
Power of a Product Property $(a b)^{m}=a^{m} b^{m}$

Negative Exponent Property $a^{-m}=\frac{1}{a^{m}} \quad a \neq 0$
Zero Exponent Property
$a^{0}=1 \quad a \neq 0$
Quotient of Powers Property $\quad \frac{a^{m}}{a^{n}}=a^{m-n} \quad a \neq 0$
Power of a Quotient Property $\quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}} \quad b \neq 0$

Properties of Exponents Worksheet

Name \qquad
Evaluate the expression.

1. $4^{2} \cdot 4^{4}$
2. $\left(5^{-2}\right)^{3}$
3. $\frac{5^{2}}{5^{5}}$
4. $\left(\frac{3}{7}\right)^{3}$
5. $\frac{2^{2}}{2^{-9}}$
6. $(-9)(-9)^{3}$

Simplify the expression.
7. $a^{6} \cdot a^{3}$
8. $\left(x^{5}\right)^{2}$
9. $\left(4 a^{2} b^{3}\right)^{5}$
10. $\frac{x^{8}}{x^{6}}$
11. $\frac{x^{5}}{x^{8}}$
12. $\frac{x^{6}}{x^{6}}$
13. $\left(\frac{4 a^{3}}{2 b^{4}}\right)^{2}$
14. $\left(2^{3} x^{2}\right)^{5}$
15. $\left(x^{4} y^{7}\right)^{-3}$
16. $\frac{x^{11} y^{10}}{x^{-3} y^{-1}}$
17. $-3 x^{-4} y^{0}$
18. $\frac{5 x^{3} y^{9}}{20 x^{2} y^{-2}}$
19. $\frac{x^{5}}{x^{-2}}$
20. $\frac{x^{5} y^{2}}{x^{4} y^{0}}$
21. $\left(x^{3}\right)^{0}$
22. $\left(10 x^{5} y^{3}\right)^{-3}$
23. $\frac{x^{-1} y}{x y^{-2}}$
24. $\left(4 x^{2} y^{5}\right)^{-2}$
25. $\frac{2 x^{2} y}{6 x y^{-1}}$
26. $\frac{x y^{9}}{3 y^{-2}} \cdot \frac{-7 y}{21 x^{5}}$
27. $\frac{12 x y}{7 x^{4}} \cdot \frac{7 x^{5} y^{2}}{4 y}$

Properties of Exponents Worksheet

Evaluate the expression.

1. $4^{2} \cdot 4^{4} \quad 4^{6}=$
2. $\left(5^{-2}\right)^{3} 5^{-6}=\frac{1}{15625}$
3. $\frac{5^{2}}{5^{5}}=\frac{1}{5^{3}}=\frac{1}{125}$
4. $\left(\frac{3}{7}\right)^{3} \frac{27}{343}$
5. $\frac{2^{2}}{2^{-9}}=2^{11}=2048$
6. $(-9)(-9)^{3}=(-9)^{4}=6561$
Simplify the expression.
7. $a^{6} \cdot a^{3}=a^{9}$
8. $\left(x^{5}\right)^{2}=x^{10}$
9. $\begin{aligned}\left(4 a^{2} b^{3}\right)^{5} & =4^{5} a^{10} b^{15} \\ & 1024 a^{10} b^{15}\end{aligned}$
10. $\frac{x^{8}}{x^{6}}=x^{2}$
11. $\frac{x^{5}}{x^{8}}=x^{-3}$
12. $\frac{x^{6}}{x^{6}}=x^{0}=1$
13. $\left(\frac{4 a^{3}}{2 b^{4}}\right)^{2}=\frac{16 a^{6}}{4 b^{8}}=\frac{4 a^{6}}{b^{8}}$
14. $\left(2^{3} x^{2}\right)^{5}=2^{15} x^{10}$ $=32,768 x^{10}$
15. $\left(x^{4} y^{7}\right)^{-3}=x^{-12} y^{-21}$
16. $\frac{x^{11} y^{10}}{x^{-3} y^{-1}}=x^{14} y^{\prime}$
17. $\begin{aligned} & -3 x^{-4} y^{0} \\ & -3 x^{-4}\end{aligned}$
18. $\frac{5 x^{3} y^{9}}{20 x^{2} y^{-2}}=\frac{x y^{11}}{4}$.
19. $\frac{x^{5}}{x^{-2}}=x^{7}$
20. $\frac{x^{5} y^{2}}{x^{4} y^{0}}=x y^{2}$
21. $\left(x^{3}\right)^{0}=1$
22. $\left(10 x^{5} y^{3}\right)^{-3}$ $\frac{1}{1,000 x^{15} y^{9}}$
23. $\frac{x^{-1} y}{x y^{-2}}=\frac{y^{3}}{x^{2}}$
24. $\left(4 x^{2} y^{5}\right)^{-2}=\frac{1}{16 x^{4} y^{10}}$
25. $\frac{2 x^{2} y}{6 x y^{-1}}$
26. $\frac{x y^{9}}{3 y^{-2}} \cdot \frac{-7 y}{21 x^{5}}$
27. $\frac{3 x}{12 x y} 7 x^{4} \cdot \frac{x}{x x^{5} y^{2}} \frac{4 y}{4 y}=3 x^{2} y^{2}$
$\frac{x y^{2}}{3}$

Properties of Exponents Worksheet

Name \qquad
Evaluate the expression.

1. $4^{2} \cdot 4^{4}$
2. $\left(5^{-2}\right)^{3}$
3. $\frac{5^{2}}{5^{5}}$
4. $\left(\frac{3}{7}\right)^{3}$
5. $\frac{2^{2}}{2^{-9}}$
6. $(-9)(-9)^{3}$

Simplify the expression.
7. $a^{6} \cdot a^{3}$
8. $\left(x^{5}\right)^{2}$
9. $\left(4 a^{2} b^{3}\right)^{5}$
10. $\frac{x^{8}}{x^{6}}$
11. $\frac{x^{5}}{x^{8}}$
12. $\frac{x^{6}}{x^{6}}$
13. $\left(\frac{4 a^{3}}{2 b^{4}}\right)^{2}$
14. $\left(2^{3} x^{2}\right)^{5}$
15. $\left(x^{4} y^{7}\right)^{-3}$
16. $\frac{x^{11} y^{10}}{x^{-3} y^{-1}}$
17. $-3 x^{-4} y^{0}$
18. $\frac{5 x^{3} y^{9}}{20 x^{2} y^{-2}}$
19. $\frac{x^{5}}{x^{-2}}$
20. $\frac{x^{5} y^{2}}{x^{4} y^{0}}$
21. $\left(x^{3}\right)^{0}$
22. $\left(10 x^{5} y^{3}\right)^{-3}$
23. $\frac{x^{-1} y}{x y^{-2}}$
24. $\left(4 x^{2} y^{5}\right)^{-2}$
25. $\frac{2 x^{2} y}{6 x y^{-1}}$
26. $\frac{x y^{9}}{3 y^{-2}} \cdot \frac{-7 y}{21 x^{5}}$
27. $\frac{12 x y}{7 x^{4}} \cdot \frac{7 x^{5} y^{2}}{4 y}$

Simplify the following:

$(\sqrt[3]{8})^{3}$
$(\sqrt[4]{16})^{4}$
$(\sqrt{10})^{2}$

Name:			Date:	
Topic: Converting Between Radical and Exponents			Block:	
Main Ideas/Questions	Notes/Examples			
Warm-Up List the perfect squares, cubes, and fourths.	Perfect Squares:			
	Perfect Cubes:			
	Perfect Fourths:			
Parts of a Radical	*If there is no index, it is assumed that \qquad			
Number of Roots	Give ALL POSSIBLE ROOTS to the radicals below.			
	$\sqrt{16}=$	$\sqrt{121}=$	$\sqrt{289}=$	$\sqrt{\frac{4}{25}}=$
	$\sqrt[3]{8}=$	$\sqrt[3]{343}=$	$\sqrt[3]{-125}=$	$\sqrt[3]{-\frac{1}{27}}=$
	$\sqrt[4]{1}=$	$\sqrt[4]{2,401}=$	$\sqrt[4]{4,096}=$	$\sqrt[4]{\frac{81}{16}}=$
	Index	Radicand	Type of Roots	\# of Roots
	Even	Positive		
	Odd	Positive		
	Odd	Negative		
	\star Even	Negative		
Simplifying Radicals	*If a radical has more than one root, the radical sign indicates only the principal, or positive, root.			
	1. $\sqrt{117}$		2. $4 \sqrt{320}$	
	3. $2 \sqrt[3]{48}$		4. $3 \sqrt[3]{108}$	

Name:			Date:
Topic:			Class:
Main Ideas/Questions	Notes/Examples		
RATIONAL EXPONENTS	Expressions with rational exponents can be rewritten as radicals using the following rules:		
	Exponential Form	Meaning	Radical Form
	$a^{\frac{1}{n}}$	The $n^{\text {th }}$ root of a	$a^{\frac{1}{n}}=$
	$a^{\frac{m}{n}}$	The $n^{\text {th }}$ root of a, raised to the $m^{\text {th }}$ power	$a^{\frac{m}{n}}=$
Converting between Exponential \& Radical Form	Directions: Write each expression in radical form. Simplify if needed.		
	1. $x^{\frac{1}{4}}$	2. $(15 n)^{\frac{1}{2}}$	3. $24^{\frac{1}{3}}$
	4. $7^{\frac{2}{3}}$	5. k^{2}	6. $3^{\frac{5}{4}}$
	$\text { 7. }(a b)^{\frac{3}{4}}$	8. $(-6 x)^{\frac{2}{3}}$	9. $7(12 w)^{\frac{1}{2}}$
	Directions: Write each expression in exponential form.		
	10. $\sqrt[3]{16}$	11. $\sqrt{x y}$	12. $\sqrt[4]{8 w}$
	13. $\sqrt[3]{11^{2}}$	14. $\sqrt[4]{k^{5}}$	15. $(\sqrt{3 m})^{7}$
	16. $(\sqrt[4]{-2 a})^{5}$	17. $\sqrt{10^{5} a^{3} b}$	18. $\sqrt[3]{9 x^{7} y^{4}}$

Simplifying Expressions with Rational Exponents	(1)	Rewrite all radicals in exponential form.	
	(2)	Use the exponent rules to simply the expression.	
	(3)	Write your answer as a radical in simplest form. Rationalize if needed.	
	19. $x^{\frac{1}{3}} \cdot x^{\frac{4}{3}}$		20. $p^{\frac{1}{4}} \cdot p^{\frac{3}{2}}$
	$21 .$		22. $\left(a^{\frac{1}{3}}\right)^{\frac{5}{2}}$
	$23 .$	$\left.32^{\frac{1}{2}}\right)^{\frac{1}{2}}$	24. $\left(8 x^{2}\right)^{\frac{2}{3}}$
	25.	$00^{-\frac{1}{2}}$	26. $16^{\frac{2}{3}} \cdot 16^{-\frac{1}{3}}$
	27.	$-216)^{-\frac{1}{3}}$	28. $\left(\frac{112}{7}\right)^{-\frac{1}{4}}$
	29.	$\sqrt{v} \cdot \sqrt{v}$	30. $\sqrt[4]{r^{3}} \cdot \sqrt{r}$
	$31 .$		32. $\frac{\sqrt{7^{3}}}{\sqrt{7}}$
	33.		34. $\sqrt[4]{25 m^{2}}$

Name: \qquad Unit 6: Radical Functions

Date: \qquad Bell: \qquad Homework 4: Rational Exponents
Directions: Rewrite each expression in radical form. Simplify if needed.

1. $28^{\frac{1}{2}}$	2. $2^{\frac{4}{3}}$	3. $x^{\frac{5}{4}}$
4. $(256 x)^{\frac{1}{4}}$	5. $(m n)^{\frac{7}{2}}$	6. $(-2 a)^{\frac{4}{3}}$

Directions: Rewrite each expression in exponential form.

Directions: Simplify each expression. Give final answers in simplest radical form.

11. $9^{\frac{1}{2}} \cdot 9^{\frac{5}{2}}$	12. $\frac{x^{\frac{7}{3}}}{x^{\frac{2}{3}}}$	13. $\left(28^{\frac{3}{5}}\right)^{\frac{5}{6}}$
14. $(-64)^{-\frac{1}{3}}$	15. $45^{-\frac{3}{2}} \cdot 45^{2}$	16. $2\left(\frac{48}{3}\right)^{-\frac{1}{4}}$
17. $\sqrt[4]{p} \cdot \sqrt{p^{3}}$	18. $\frac{\sqrt[3]{24^{4}}}{24}$	19. $\frac{m}{\sqrt[4]{m}}$
20. $\frac{16}{\sqrt[4]{16^{3}}}$		

Name:	Date:
Topic:	Class:

Main Ideas/Questions	Notes/Examples			
Warm-Up Lisi the perfect squares. cubes, and fourths.	Perlect Squares: $1,4,9,16,25,36,49,64,81,100, \ldots$			
	Perrect Cubes: $1,8,27,64,125,216,343,512,729, \ldots$			
	Periect founths: $1,16,81,256,625,1296,2401,4096, \ldots$.			
Parts of a Radical	The $n^{\text {th }}$ root of a reat number. a, can be written as the radical expression $\sqrt[n]{a}$ \qquad IIf there is no index, it is assumed that $n=2$			
Number of Roots	Give ALL POSSIBLE ROOTS to the radicals below.			
	$\sqrt{16}= \pm 4$	$\sqrt{121}= \pm 11$	$\sqrt{289}=17$	$\sqrt{\frac{4}{25}}= \pm \frac{2}{5}$
	$\sqrt[3]{8}=2$	$\sqrt[3]{343}=7$	$\sqrt[3]{-125}=-5$	$\sqrt[3]{-\frac{1}{27}}=-$
	$\sqrt[4]{1} \pm 1$	$\sqrt[4]{2,401}=97$	$\sqrt[4]{4,096}= \pm 8$	$\sqrt{\frac{81}{16}}= \pm \frac{3}{2}$
	Index	Radical	Type of Roots	\# of Roots
	Even	Positive	real	$2(\pm)$
	Odd	Positive	real	$1(t)$
	Odd	Negative	real	$1(-)$
	\star Even	Negative	imag	$2(\pm)$
Simplifying Radicals	If a radical has more than one root, the radical sign indicates only the principal, or posilive, root.			
	1.	$3 \sqrt{13}$	$\begin{aligned} & \text { 2. 4 } \sqrt{320} \\ & 4 \cdot \sqrt{64} \sqrt{5} \\ & 4.8 \sqrt{5} \end{aligned}$	$32 \sqrt{5}$
	$\begin{aligned} & 3 \cdot 2 \sqrt[3]{48} \\ & 2 \cdot \sqrt[3]{8} \sqrt[3]{6} \\ & 2 \cdot 2 \sqrt[3]{6} \end{aligned}$ 3.	$=4 \sqrt[3]{6}$		$=9 \sqrt[3]{4}$

Name:			Date:
Topic:			Class:
Main Ideas/Questions	Notes/Examples		
RATIONAL EXPONENTS	Expressions with rational exponents can be rewititen as radicals using the following rules:		
	Exponential form	Meaning	Radical form
	$a^{\frac{1}{n}}$	The $n^{\text {th }}$ root of a	$a^{\frac{1}{x}}=\sqrt[n]{a}$
	$a^{\frac{m}{n}}$	The $n^{\text {mh }}$ root of a, raised to the $m^{\text {ih }}$ power	$a^{\frac{m}{m}}=\sqrt[n]{a^{m}}$
Converting between Exponential \& Radical Form	Directions: Write each expression in radical form. Simplify if needed.		
	1. $=\sqrt[4]{x}$	$\begin{aligned} & \text { 2. }(15 n)^{\frac{1}{2}} \\ & =\sqrt{15 n} \end{aligned}$	$\begin{aligned} & 3.22^{\frac{1}{3}} \\ & =\sqrt[3]{24} \\ & =\sqrt[3]{8} \cdot \sqrt[3]{3}=2 \sqrt[3]{3} \end{aligned}$
	4. $7^{\frac{2}{3}}$ $\begin{aligned} & =\sqrt[3]{7^{2}} \\ & =\sqrt[3]{49} \end{aligned}$	5. $\begin{aligned} & =k^{6 / 2} \cdot k^{1 / 2} \\ & =k^{3} \sqrt{k} \end{aligned}$	6. 3^{4} $\begin{aligned} & =3^{\frac{4}{4}} \cdot 3^{\frac{1}{4}} \\ & =3 \sqrt[4]{3} \end{aligned}$
	$\text { 7. } \begin{aligned} &(a b)^{\frac{3}{4}} \\ &= \sqrt[4]{(a b)^{3}} \\ &= \sqrt[4]{a^{3} b^{3}} \end{aligned}$	$\text { 8. } \begin{aligned} & (-6 x)^{\frac{2}{3}} \\ = & \sqrt[3]{(-6 x)^{2}} \\ = & \sqrt[3]{36 x^{2}} \end{aligned}$	$\text { 9. } \begin{aligned} & 7(12 w)^{\frac{1}{2}} \\ = & 7 \sqrt{12 w} \\ = & 7 \sqrt{4} \sqrt{3 w} \\ = & 14 \sqrt{3 w} \end{aligned}$
	Directions: Write each expression in exponentical form.		
	10. $=\frac{\sqrt[3]{16}}{=(16)^{1 / 3}}$	11. $\begin{aligned} & \text { 1. } \sqrt{x y} \\ & =(x y)^{1 / 2} \end{aligned}$	12. $\begin{aligned} & \text { 2. } \sqrt[4]{8 w} \\ & =(8 w)^{1 / 4} \end{aligned}$
	13. $\begin{aligned} & =\sqrt[3]{11^{2}} \\ & =\left((11)^{2 / 3}\right. \end{aligned}$	14. $=\sqrt[4]{k^{5}}$	15. $=\left(\frac{\sqrt{3 m})^{7}}{(3 m)^{7 / 2}}\right.$
	$\text { 16. } \begin{aligned} &(\sqrt[4]{-2 a})^{5} \\ &=(-2 a)^{5 / 4} \end{aligned}$	17. $\begin{aligned} & =\sqrt{10^{5} a^{3} b} \\ & =\left(10^{5} a^{3} b\right)^{1 / 2} \end{aligned}$	$\text { 18. } \begin{aligned} & \sqrt[3]{9 x^{7} y^{4}} \\ = & \left(9 x^{7} y^{4}\right)^{1 / 3} \end{aligned}$

Simplifying Expressions with Rational Exponents	(1) Rewwile all rodicals in exponentiol fom.		
	(2) Use the exponent rules to simply the expression.		
	(3) Witie your answer os a radical in implest tom. Rationolize if needed.		
	19.$\begin{gathered} x^{\frac{1}{3} \cdot x^{\frac{4}{3}}=x^{5 / 3}} \\ =x^{3 / 3} \cdot x^{2 / 3} \\ =x \sqrt[3]{x^{2}} \end{gathered}$$\text { 20. } \begin{aligned} & p^{\frac{1}{4} \cdot p^{\frac{54}{24}}}=p^{1 / 4} \\ &=p^{4 / 4} \cdot p^{3 / 4} \\ &=p^{-4} p^{3} \end{aligned}$		
	$\text { 21. } \begin{aligned} \frac{m^{\frac{5}{7} 10}}{m^{4}} & =m^{3 / 4} \\ & =\sqrt[4]{m^{3}} \end{aligned}$		$\text { 22. } \begin{aligned} \left(a^{\frac{1}{3}}\right)^{\frac{5}{2}} & =a^{5 / 4} \\ & =\sqrt[6]{a^{5}} \end{aligned}$
	$\text { 23. } \begin{aligned} \left(32^{\frac{1}{2}}\right)^{\frac{1}{2}} & =32^{1 / 4} \\ & =\sqrt[4]{32} \\ & =\sqrt[4]{16} \sqrt[4]{2}=2 \sqrt[4]{2} \end{aligned}$		$\text { 24. } \begin{aligned} \left(8 x^{2}\right)^{\frac{2}{3}} & =8^{2 / 3} x^{4 / 3} \\ & =\sqrt[3]{64 x^{4}} \\ & =\sqrt[3]{64 x^{3}} \sqrt[3]{x}=\sqrt[4]{4 \sqrt[3]{x}} \end{aligned}$
	$\text { 25. } \begin{aligned} 100^{-\frac{1}{2}} & =\frac{1}{\sqrt{100}} \\ & =\frac{1}{10} \end{aligned}$		$\text { 26. } \begin{aligned} 16^{\frac{2}{3}} \cdot 16^{\frac{1}{3}} & =16^{1 / 3} \\ & =\sqrt[3]{16} \\ & =\sqrt[3]{8} \sqrt[3]{2}=2 \sqrt[3]{2} \end{aligned}$
	$\text { 27. } \begin{aligned} (-216)^{\frac{1}{3}} & =\frac{1}{\sqrt[3]{-216}} \\ & =\frac{1}{-6} \end{aligned}$		$\text { 28. } \begin{aligned} \left(\frac{112}{7}\right)^{-\frac{-1}{4}} & =\left(\frac{7}{112}\right)^{1 / 4} \\ & =\left(\frac{1}{16}\right)^{1 / 4}=\frac{1}{2} \end{aligned}$
	$\begin{aligned} 29 \cdot \sqrt[3]{v} \cdot \sqrt{v} & =v^{1 / 3} \cdot v^{1 / 2} \\ & =v^{5 / 6} \\ & =\sqrt[6]{v^{5}} \end{aligned}$		$\text { 30. } \begin{aligned} \sqrt[4]{r^{3}} \cdot \sqrt{r} & =r^{3 / 4} \cdot r^{1 / 2} \\ & =r^{5 / 4} \\ & =r^{4 / 4} \cdot r^{1 / 4} \\ & =\sqrt[4]{r} \end{aligned}$
	$\text { 31. } \begin{aligned} \frac{4}{\sqrt[3]{4}}=\frac{4}{4^{1 / 3}} & =4^{2 / 3} \\ & =\sqrt[3]{16} \\ & =2 \sqrt[3]{2} \end{aligned}$		$\text { 32. } \begin{aligned} \frac{\sqrt{3^{3}}}{\sqrt{7}}=\frac{7^{3 / 2}}{7^{1 / 2}} & =7^{2 / 2} \\ & =7 \end{aligned}$
	$\text { 33. } \begin{aligned} \sqrt[3]{x^{10}} & =x^{10 / 4}=x^{5 / 2} \\ & =x^{4 / 2 \cdot x^{1 / 2}} \\ & =\sqrt{x^{2} \sqrt{x}} \end{aligned}$		$\text { 34. } \begin{aligned} \sqrt[4]{25 m^{2}} & =25^{14 \cdot} \cdot m^{2 / 4} \\ & =\left(5^{2}\right)^{1 / 4} \cdot m^{1 / 2} \\ & =5^{1 / 2} \cdot m^{1 / 2}=\sqrt{5 m} \end{aligned}$

Name: \qquad
Date: \qquad Bell: \qquad Unit 6: Radical Functions \square Homework 4: Rational Exponents

Directions: Rewrite each expression in radical form. Simplify if needed.

Directions: Rewrite each expression in exponential form.

9. $\begin{aligned} &(\sqrt[3]{2 w})^{5} \\ &=(2 w)^{5 / 3}\end{aligned}$

Directions: Simplify each expression. Give final answers in simplest radical form.

$\text { 11. } \begin{aligned} 9^{\frac{1}{2} \cdot 9^{\frac{5}{2}}} & =9^{6 / 2} \\ & =9^{3} \\ & =729 \end{aligned}$	$\text { 12. } \begin{aligned} \frac{x^{\frac{7}{3}}}{x^{\frac{2}{3}}} & =x^{5 / 3} \\ & =\sqrt[3]{x^{5}} \\ & =\sqrt[3]{x^{2}} \sqrt[3]{x^{2}} \\ & =\sqrt[{x \sqrt[3]{x^{2}}}]{ } \end{aligned}$	$\text { 13. } \begin{aligned} \left(28^{\frac{3}{5}}\right)^{\frac{5}{6}} & =28 \frac{15}{30} \\ & =28^{1 / 2} \\ & =\sqrt{28} \\ & =\sqrt{4} \sqrt{7}=2 \sqrt{7} \end{aligned}$
$\text { 14. } \begin{aligned} (-64)^{\frac{1}{3}} & =\frac{1}{(-64)^{1 / 3}} \\ & =\frac{1}{\sqrt[3]{-64}} \\ & =\frac{1}{-4} \end{aligned}$	15. $\begin{aligned} 45^{\frac{3}{2}} \cdot 45^{2} & =45^{1 / 2} \\ & =\sqrt{45} \\ & =\sqrt{9} \sqrt{5} \\ & =3 \sqrt{5} \end{aligned}$	$\text { 16. } \begin{aligned} 2\left(\frac{48}{3}\right)^{-\frac{1}{4}} & =2\left(\frac{1}{16}\right)^{1 / 4} \\ & =2\left(\frac{1}{2}\right) \\ & =1 \end{aligned}$
$\text { 17. } \begin{aligned} \sqrt[4]{p} \cdot \sqrt{p^{3}} & =p^{1 / 4} \cdot p^{3 / 2} \\ & =p^{7 / 4} \\ & =p^{4 / 4} \cdot p^{34} \\ & =p \sqrt[4]{p^{3}} \end{aligned}$	$\text { 18. } \begin{aligned} \frac{\sqrt[3]{24^{4}}}{24} & =\frac{24^{4 / 3}}{24} \\ & =24^{1 / 3} \\ =\sqrt[3]{24} & =\sqrt[3]{8} \sqrt[3]{3} \\ & =2 \sqrt[3]{3} \end{aligned}$	$\text { 19. } \begin{aligned} \frac{m}{\sqrt[4]{m}} & =\frac{m}{m^{\prime / 4}}=m^{3} / 4 \\ & =\sqrt[4]{m^{3}} \end{aligned}$
$\text { 20. } \begin{aligned} \frac{16}{\sqrt[4]{16^{3}}}=\frac{16}{16^{3 / 4}} & =16^{1 / 4} \\ & =2 \end{aligned}$	$\text { 21. } \begin{aligned} \sqrt[4]{2^{2} b^{14}} & =\left(a^{2} b^{14}\right)^{1 / 4} \\ & =a^{1 / 2} b^{7 / 2} \\ & =b^{3} \sqrt{a b} \end{aligned}$	$\text { 22. } \begin{aligned} \sqrt[4]{36 w^{6}} & =\left(36 w^{6}\right)^{1 / 4} \\ & =\left(6^{2} w^{6}\right)^{1 / 4} \\ & =6^{1 / 2} w^{3 / 2} \\ & =w \sqrt{6 w} \end{aligned}$

