Logarithmic Functions
<u> </u>
Remember: The inverse of a function, written f ⁻¹ , is a function
such that $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$
Ev. 1. Chave that $f(y) = 2y + 1$ and $g(y) = 1/2(y + 1)$ are inversed
Ex 1: Show that $f(x) = 3x + 1$ and $g(x) = 1/3(x - 1)$ are inverses.

How do you find the inverse of a function?

Ex 2) Find the inverse of
$$f(x) = \frac{2}{3+x}$$

Silent Board Game:

<u>8</u>	1/2	<u>32 1</u>	16 4	3 6	64 2	0	.25	<u>-1</u>
Ц							- 7	
		ı						
					•			

$$\sqrt{2}$$
 | .2 | $1/8$

Name:		Date:			
Topic:		Class:			
Main Ideas/Questions	Notes/Examples				
What is a	A logarithm (log) is another way of writing exponents.				
LOGARITHM?	Logarithmic Form $\log_b a = x$	Exponential Form			
	Read as "log b	ase b of a equals x ."			
C	Directions: Write each equation in e	xponential form.			
Converting LOG © EXP	1. log ₃ 9 = 2	2. log ₆ 216 = 3			
	3. log ₇ 1 = 0	4. log ₂ 16 = 4			
	5. $\log_4 \frac{1}{16} = -2$	6. $\log_9 27 = \frac{3}{2}$			
•	Directions: Write each equation in Ic	pagrithmic form			
Converting EXP © LOG	7. 14 ² = 196	8. 3 ⁴ = 81			
	9. 12 ¹ = 12	10. $36^{\frac{1}{2}} = 6$			
	11. $2^{-3} = \frac{1}{8}$	12. $8^{\frac{4}{3}} = 16$			

© Gina Wilson (All Things Algebra), 2015

Name:		Date:			
Topic:		Class:			
Main Ideas/Questions	Notes/Examples				
What is a	A logarithm (log) is another way of writing exponents.				
LOGARITHM?	Logarithmic Form	Exponential Form			
	$\log_b a = x$	$b_x = \alpha$			
	Read as "log be	ase b of a equals x."			
Converting	Directions: Write each equation in e	xponential form. 2. log ₆ 216 = 3			
LOG © EXP	1. log ₃ 9 = 2				
	3 ² =9	63 = 216			
	3. log ₇ 1 = 0	4. log ₂ 16 = 4			
	70=1	24 = 16			
	5. $\log_4 \frac{1}{16} = -2$	6. $\log_9 27 = \frac{3}{2}$			
		$q^{3/2} = 27$			
	4-2 = 16	9 - 21			
Convention	Directions: Write each equation in I				
Converting EXP © LOG	7. 14 ² = 196	8. 3 ⁴ = 81			
EXP © LOO	109 14 196=2	log 3 81 =4			
	311				
	9. 12 ¹ = 12	10. $36^{\frac{1}{2}} = 6$			
	1091212=1	109 36 6 = 生			
	10312	10030			
	11. $2^{-3} = \frac{1}{8}$	12. $8^{\frac{4}{3}} = 16$			
	•	109 8 16 = #			
	log2 = -3	109814 3			
ti .	•	S			

COMMON LOGARITHM	LOGARITHM logarithm and can be written without the base. $\log_{10} x \longrightarrow$				
EVALUATING	Directions: Use your knowledge of exponents to evaluate the following logarithms.				
LOGARITHMS	13. log ₇ 49	14. log ₃ 27			
	15. log 100	16. log ₁₂ 1			
	17. log ₂ 64	18. log ₃ 243			
	19. log ₉ $\frac{1}{81}$	20. log ₆₄ 4			
CHANGE OF BASE FORMULA	Some logarithms are not as easy to evalute as those above, and will require the change of base formula. $\log_b a =$				
Choose BASE 10	Directions: Evalute each log using the	change of base formula.			
because there is a calculator button for it!	21. log ₁₆ 64	22. log ₈ 32			
	23. log ₂ 54	24. log ₁₀ 294			
	25. log ₄ 136	26. log ₆ $\frac{1}{36}$			
	I .	© Gina Wilson (All Things Algebra), 2015			

COMMON LOGARITHM	A logarithm with base 10 is called a common logarithm and can be written without the base. $\log_{10} x \rightarrow \log X$		
EVALUATING LOGARITHMS	Directions: Use your knowledge of explogarithms. 13. log ₇ 49	ponents to evaluate the following 14. log ₃ 27	
LOGARTINAS	1×=49	3 ^X = 27	
	X=2	X=3	
	15. log 100	16. log ₁₂ 1	
	10 ^X =100 X=2	12 ^X = 1 X = 0	
	17. log ₂ 64	18. log ₃ 243	
	2×= 64	3 ^x = 243	
	X=6	X=5	
	19. log ₉ 1/81	20. log ₆₄ 4	
	$q^{X} = \frac{1}{81} \boxed{X = -2}$	64 ^x = 4 x= 1/3	
CHANGE OF BASE FORMULA	Some logarithms are not as easy to evalute as those above, and will require the change of base formula. $\log_b a = \frac{\log_b a}{\log_b a}$		
Choose BASE 10	Directions: Evalute each log using the		
because there is a calculator button For iti	109 64 109 16 = [1.5]	$\frac{\log 32}{\log 8} = \boxed{1.7}$	
	23. log ₂ 54	24. log ₁₀ 294	
	10g 54 = 5.7549	109 10 = [2.4683]	
	$\frac{\log_4 136}{\log_4 1} = 3.5437$	26. $\log_6 \frac{1}{36}$ $\log_6 \frac{1}{36}$ $= -2$	
l		1096	

Name:				Date:	
Topic:			Class:		
Main Ideas/Questions Notes/Examples					
Product Property $\log_b(m \cdot n) =$	1. log ₂ 7 + log ₂ 4	garithm. Simplify if possible 2. log 25 + log 4			3. log ₄ 2x + log ₄ 4x ²
	Expand using the product		_		C los (F.)
	4. log 6	5. log ₇ 45			6. log ₂ (5x)
Ountiont	Condense into a single logarithm. Simplify if possible.				
Quotient Property $\log_b\left(\frac{m}{n}\right) =$	7. log ₃ 24 – log ₃ 8	8. log ₂ 15 – log ₂ 15		log ₂ 15	9. $\log_4 x^9 - \log_4 x^2$
	Expand using the quotient property.				
	10. log ₈ 4	11. $\log_5 \frac{1}{3}$			12. $\log\left(\frac{m}{7}\right)$
122	Condense into a single lo	garithm. Sir	m	plify if possible).
Power Property $\log_b m'' =$	13. 5·log ₄ 2	14. 7 · log ₂	2 ,	r	15. $\frac{1}{3}$ · log 8
	Expand using the power p	roperty. Sin	n	plify if possible	
	16. log ₂ 8 ⁷	17. 3·log	4	x – 1	18. $\log_7 \sqrt{w}$

© Gina Wilson (All Things Algebra), 2015

Name:			Da	te:		
Topic:			Cla	iss:		
Main Ideas/Questions	Notes/Examples			**		
Droducet	Condense into a single logarithm. Simplify if possible.					
Product	1. log ₂ 7 + log ₂ 4	2. log 25+log 4			3. $\log_4 2x + \log_4 4x^2$	
Property	10927.4	log 25	5.6	l _	$\log_4 2x \cdot 4x^2$ $\log_4 8x^3$	
$\log_b(m \cdot n) =$	109 2 28	Ing	100		[m., 8x3]	
(logbm+logbn)		1				
	Expand using the product					
	4. log 6	5. log ₇ 45			6. $\log_2(5x)$	
Answers ->	log 2.3	109,5.	9		10925·X	
NOW.	log 2+log 3	10915	+	10979	log 2 + log 2X	
	Condense into a single le	andthe Cir		e lif manath la		
Quotient	Condense into a single lo 7. log ₃ 24 – log ₃ 8	8. log ₂ 15 -			9. log ₄ x ⁹ – log ₄ x ²	
Property	log3 24	7729			100/4 ×9	
()	20.8	10921	5		10 J4 X2	
$\log_b\left(\frac{m}{n}\right) =$	log 3	1092			1094 X7	
1096m-1096n	Expand using the quotient property.					
	10. log ₈ 4	11. log ₅ 1/3			12. $\log\left(\frac{m}{2}\right)$	
Arswers	1098 2	logs #	5			
way!	10988-10982	109515		9545	log m - log 7	
	Condense into a single lo	garlfhm. Sin	nplify	/ if possible).	
Power	13. 5·log ₄ 2	14. 7·log2	x		15. ½·log 8	
Property	109425	[10] 2 X			log 8"3	
$\log_b m'' = 1000 \text{ m/s}$	109 4 32				109 \$ 8	
n· log b m	Expand using the power p	roperty. Sim	plify			
	16. log ₂ 8 ⁷	17. 3·log 4		,	18. log ₇ √w	
	7.109,28	X-1.3.	loa	4	109 7 W1/2	
	1.1120	(3x-		6000	12. log 1 W	
					Gina Wilton (All Thiorr Alrebra) 2015	

Name:		Unit 7: Exponenti	al & Logarithmic Functions	
Date:	Bell:	Homework 3: Int	tro to Logarithms	
Directions: Write each equation	in exponential	form.		
1. log ₂ 128 = 7	2. log ₈ 64 = 2		3. $\log_3 \frac{1}{27} = -3$	
Directions: Write each equation	in logarithmic	form.		\dashv
4. 4 ⁴ = 256	5. $8^3 = 512$		6. $27^{\frac{2}{3}} = 9$	
Directions: Evaluate each logar		hange of base form		_
7. log ₆ 36	8. log ₂ 32		9. log ₄ 64	
10. log ₃ 81	11. log ₁₀₀ 10		12. $\log_7 \frac{1}{7}$	
13. log ₁₈ 1	14. log ₂ $\frac{1}{16}$		15. log 1000	
16. log ₁₆ 8	17. log ₂₄₃ 27		18. log ₃ 92	
19. log ₇ 35	20. log ₂ 260		21. log ₅ 38	

Name:	_	Unit 7: Exponential & Logarithmic Functions	
Date:	_ Bell:	Homework 3: Intro to Logarithms	

Date:	Bell: Homework 3: In	itro to Logarithms
Directions: Write each equation	in exponential form.	
1. log ₂ 128 = 7	2. log ₈ 64 = 2	3. $\log_3 \frac{1}{27} = -3$
27= 128	8 ² = 64	
	8 .	3-3 = 1
Directions: Write each equation	in logarithmic form.	
4. $4^4 = 256$	5. $8^3 = 512$	6. 27 3 = 9
1094256=4	log8512=3	10927 9= =================================
J .	J.	10927 1 3
Directions: Evaluate each logar	ithm. Use the change of base form	nula when necessary.
7. log ₆ 36	8. log ₂ 32	9. log ₄ 64
6 ^x = 36	2 ^x =32	4× = 64
X=2	X=5	X=3
		القسقال
10. log_3 81	11. log ₁₀₀ 10	12. $\log_7 \frac{1}{7}$
3 ^x = 81	100×=10	7×=+
x=4	X=1/2	[X=-]
12 land	•	
13. log ₁₈ 1	14. $\log_2 \frac{1}{16}$	15. log 1000
18× = 1	2×=16	10X = 1000
X=0	<u> </u>	X=3
	X=-4	12 22
16. log ₁₆ 8	17. log ₂₄₃ 27	18. log ₃ 92
$\frac{\log 8}{\log 16} = 0.15$	109 27 -10.6	$\frac{\log a2}{\log 3} = 4.1159$
log 16	10g 27 10g 243 =0.6	1093
19. log ₇ 35	20. log ₂ 260	21. log ₅ 38
10g 35 = [1.8271]	$\frac{100260}{1092} = 8.0024$	$\frac{\log 38}{\log 5} = 2.2602$
1097	109 2	109 5
- 0	•	'

	Putting it All Together!					
	Directions: Rewrite as a single logarithm. Simple	lify if possible.				
	19. 2·log 6 – log 9	20. $4 \cdot \log_4 a + 2 \cdot \log_4 b$				
NG LOGS	21. $7 \cdot \log_4 u - 3 \cdot \log_4 v^2$	22. log ₂ 15 + log ₂ 4 – log ₂ 6				
CONDENSING LOGS	23. $\log_3 4 + \log_3 y + \frac{1}{2} \cdot \log_3 49$	24. $\frac{1}{3} (\log_5 8 + \log_5 27) - \log_5 3$				
3	25. 3·log ₂ 4 – log ₂ 32	26. $2 \cdot \log 6 - \frac{1}{4} \cdot \log 16 + \log 3$				
	Directions: Expand each logarithm.					
roes	$27. \log_6 \left(xyz^4 \right)$	$28. \log_4\left(\frac{a^9}{b}\right)$				
EXPANDING	29. $\log_7 (q^4 r^2)^2$	30. $\log_2\left(\frac{y}{z^5}\right)^2$				
EXP/	31. $\log \sqrt{7x^3}$	32. $\log_3 \sqrt[4]{m^5 n^2}$				
		© Gina Wilson (All Things Algebra), 2015				

Durthing it All Todath and			
-	Putting it All Together!		
	Directions: Rewrite as a single logarithm. Simp 19. 2 log 6 – log 9	lify if possible. 20. $4 \cdot \log_4 a + 2 \cdot \log_4 b$	
	A CARREST AND A	1094 a4 + 1094 b2	
	109 62 = 109 36 = 109 4		
İ		1094 a 462	
SS			
Ŏ	21. 7·log ₄ u – 3·log ₄ v ²	22. log ₂ 15+log ₂ 4 - log ₂ 6	
<u> </u>	1094 47 - 1094 V	109215.4	
Ž	1094 W		
CONDENSING LOGS	1094 70	109210	
Z	23. $\log_3 4 + \log_3 y + \frac{1}{2} \cdot \log_3 49$	24. $\frac{1}{3} (\log_5 8 + \log_5 27) - \log_5 3$	
	log 3 4 · 4 · 49 1/2	logs 8 13. 273 . logs 2.3	
Ž	10934.4.7 = 1093284	, ,	
ဗ	1095 1 1 1	= 100/52	
	25. 3·log ₂ 4 – log ₂ 32	26. $2 \cdot \log 6 - \frac{1}{4} \cdot \log 16 + \log 3$	
	109243 - 1092 64		
	32	$\log \frac{b^2}{1b^{14} \cdot 3} = \log \frac{36}{b} = \log 6$	
	= log 22	16 3	
	Directions: Expand each logarithm.		
9	27. $\log_6(xyz^4)$	28. $\log_4\left(\frac{a^9}{b}\right)$	
S	logu X + logu y + logu z+	109 4 a 4 - 109 4b	
ŏ	log . X + log . y + 4 log . 2	9. log 4 a - log 4 b/	
de Logs			
	29. $\log_7 \left(q^4 r^2\right)^2$	30. $\log_2\left(\frac{y}{z^5}\right)^2 = 2\left(\log_2 y - \log_2 z^{5}\right)$	
Ă	$2(\log_{7}q^{4} + \log_{7}r^{2})$	=2(logzy-5logzt)	
Ż	2 (4.109-9+210g-r)=8109-9+410		
A C			
EXPANDIN	31. $\log \sqrt{7x^3} = \frac{1}{2} (\log 1 + \log X^3)$	32. $\log_3 \sqrt[4]{m^5 n^2} = \frac{1}{4} (\log_3 m^5 + \log_3 n^2)$	
ш	$= \frac{1}{2} (\log 7 + 3 \log x)$	=4(5log3m + 2log3n)	
	= 1 log 7 + 3 log x	$=\frac{5}{4} \log_3 m + \frac{1}{2} \log_3 n$	
<u> </u>		Gina Wilson (All Things Algebra), 2015	

PROPERTIES OF LOGARITHMS

Name	Rule(s)	Exam
BASIC LOGARITHMS	$\log_b b = 1$; $\log_b 1 = 1$	Simp log ₁₄ 14 =
PRODUCT	$\log_b(m \cdot n) =$	Condi log ₅ 6 +
QUOTIENT RULE	$\log_b\left(\frac{m}{n}\right) =$	Condi log ₄ 84 –
POWER	$\log_b m^n =$	Condi 2 · log
CHANGE OF BASE FORMULA	$\log_b a =$	Usin log ₇ 32 =
REMEMBER: E	REMEMBER: BASE 10 LOGS ARE COMMON LOGS AND WRITTEN	WRITTEN

U	,
	5
₹	
ှ	•
	:
Σ	ļ
	ż
9	Ļ
GAP.)
č)
Ξ	í
	_
-	
느	
F	•
\tilde{a}	•
V	2
V	
V	
PTTES (
V	

GRAPHIC ORGANIZER

Name	Rule(s)	Example 1	Example 2
BASIC	$\log_b b = 1 ; \log_b 1 = 0$	Simplify:	Simplify:
SALLI TAURON		10914 14 = 1	log ₃ 1= <i>C</i>
1		Condense:	Expand:
PRODUCT	$\log_b(m \cdot n) = \log_b m + \log_b n$	log ₅ 6 + log ₅ 7 =	log ₂ 63 =
		109 5 42	10927 + 10929
į		Condense:	Expand:
RULE	$\log_b\left(\frac{m}{n}\right) = \log_b m - \log_b n$	109, 84 - 109, 12 = 109 4 7	6 601 - 18 601 = 6 601
i i		Condense:	Expand:
RULE	$\log_b m^n = \Omega \cdot \log_b M$	2.109,8 = [D3,364]	$ \log_2 6^{x-1} $
		2	
CHANGE	loga	Using a common base, evaluate the expression below.	base, evaluate ion below.
OF BASE	log, a = 109 b	109, 32 = 109 32	= 1.7810
FURINDLA		<u>8</u>	
REMEMBER: E	REMEMBER: BASE 10 LOGS ARE COMMON LOGS AND WRITTEN WITHOUT A BASE! (log x)	WRITTEN WITHOUT A	BASE! (log x)

Name:	Un	it 7: Exponential	& Logarithmic Functions
Date:	Bell: Homework 4: Pr		perties of Logarithms
*	* This is a 2-page	document! **]
Directions: Complete each rule			
PRODUCT RULE	QUOTIENT	T RULE	POWER RULE
$\log_b\left(m\cdot n\right) =$	log,	$\left(\frac{m}{n}\right) =$	$\log_b m^n =$
logb m+ logb n	1096 m - 100	36h	N·log _b m
Directions: Condense each exp	ression into a single	logarithm. Simp	olify if possible.
1. log, 9+ log, 4 log, 9.4 = log		log ₂ 80 - log ₂ 5	= log 2 16
3. ½·log ₃ 81	4	3 · log ₄ 8 – 5 · log	42
$ 09_38 ^{1/2} = 09_3\sqrt{8} $ $= 09_3\sqrt{8} $			= log 4 512 = log 4 16
5. $7 \cdot \log_5 x + 3 \cdot \log_5 y^4$ $\log_5 x^7 \cdot y^{12}$ $= \left[\log_5 x^7 y^{12}\right]$	6	1093 a ⁷ + (1093 a ² + 1093	$\frac{1-2 \cdot \log_3 b}{a^2} = \frac{\log_3 a}{b^2}$
7. $\log_4 x^7 - \log_4 x^2 + 4 \cdot \log_4 x^3$ $\log_4 \frac{\chi^7}{\chi^2} \cdot \chi^{12} =$	1094 X19	$\frac{1}{2}(\log_6 45 - \log_6 45 - \log_6 \frac{1}{5})^{1/2}$	
-[094 X17	= 10g , 91/2 = 10g , 3.	12 = \[\log 6 36 \] Gra Wilson [All Thing: Algebra], 2015

Directions: Condense, then use the change of	base formula to evaluate the logarithm.
9. log ₉ 35 – log ₉ 7	10. 2 · log ₃ 8 - 4 · log ₃ 2
10g q 35	109382
$\log_{9}5 \rightarrow \frac{\log_{5}}{\log_{9}} = 0.7325$	$\log_3 \frac{64}{16}$ $\log_3 \frac{1004}{1003} = 1.2619$
	10934
11. $\frac{1}{3} \cdot \log_4 8 + \log_4 15$	12. $\log_2 27 + \log_2 4 - 2 \cdot \log_2 3$
log 48"3.15	1092 27.4
1094 2.15 1094 30 1094 = 2.4534	$\log_2 \frac{108}{9}$ $\frac{\log_1 2}{\log_2 2} = 3.5850$
	109212

Directions: Expand each expression.	
$13. \log_{8}(mn^{2})$ $[\log_{8} M + 2\log_{8} N]$	14. $\log \left(\frac{x^9}{y^4} \right)$ $[9 09 X-4 09 y]$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16. $\log \left(\frac{p^4}{q^7}\right)^2$ $\log \frac{p^8}{q^{14}}$ $8\log p - 14\log q$
$\frac{17. \log_5 \sqrt{a^7 b}}{\log_5 0} \sqrt{\frac{1}{2} b ^2 2}$ $\frac{1}{2} \log_5 0 + \frac{1}{2} \log_5 b$	18. logy \$\frac{3\c^2 a^{15}}{2^{13}} \log_4 C^{2/3} d^5 \[\frac{2}{3} \log_4 C + 5 \log_4 d \right]

Gina Wilson (All Things Algebra), 2015