Logarithmic Functions

Remember: The inverse of a function, written f^{-1}, is a function such that $f^{-1}(f(x))=x$ and $f\left(f^{-1}(x)\right)=x$

Ex 1: Show that $\mathrm{f}(\mathrm{x})=3 \mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=1 / 3(\mathrm{x}-1)$ are inverses.
\qquad

How do you find the inverse of a function?

Ex 2) Find the inverse of $\mathrm{f}(\mathrm{x})=\frac{2}{3+x}$

Silent Board Game:

$$
\begin{aligned}
& \left.\begin{array}{l|l|l|l|l|l|l|l|l|l|l}
\underline{8} & \underline{1 / 2} & \underline{32} & \underline{1} & \underline{16} & 4 & \underline{3} & 64 & 2 & \underline{0} & \underline{25} \\
\hline
\end{array} \right\rvert\,-1 \\
& \sqrt{ } 2|\underline{.2}| \underline{1 / 8}
\end{aligned}
$$

Name:	Date:
Topic:	Class:

Main Ideas/Questions	Notes/Examples	
What is a LOGARITHM?	A logarithm (log) Logarithmic Form $\log _{b} a=x$	r way of writing exponents. Exponential Form b of a equals x."
Converting$\text { LOG } \ominus \text { EXP }$	Directions: Write each equation in exponential form.	
	1. $\log _{3} 9=2$	2. $\log _{6} 216=3$
	3. $\log _{7} 1=0$	4. $\log _{2} 16=4$
	5. $\log _{4} \frac{1}{16}=-2$	6. $\log _{9} 27=\frac{3}{2}$
Converting EXP \ominus LOG	Directions: Write each equation in logarithmic form.	
	7. $14^{2}=196$	8. $3^{4}=81$
	9. $12^{1}=12$	10. $36^{\frac{1}{2}}=6$
	11. $2^{-3}=\frac{1}{8}$	12. $8^{\frac{4}{3}}=16$

\square Date:
Name:
Class:
Topic:
Class.

COMMON LOGARITHM	A logarithm with base 10 is called a common logarithm and can be written without the base.		$\log _{10} x \rightarrow$
EVALUATING LOGARITHMS	Directions: Use your knowledge of exponents to evaluate the following logarithms.		
	13. $\log _{7} 49$	14. $\log _{3} 27$	
	15. $\log 100$	16. $\log _{12} 1$	
	17. $\log _{2} 64$	18. $\log _{3} 243$	
	19. $\log _{9} \frac{1}{81}$	20. $\log _{64} 4$	
CHANGE OF BASE FORMULA	Some logarithms are not as easy to evalute as those above, and will require$\log _{b} a=$ the change of base formula.		
	Directions: Evalute each log using the change of base formula.		
	21. $\log _{16} 64$	22. $\log _{8} 32$	
	23. $\log _{2} 54$	24. $\log _{10} 29$	
	25. $\log _{4} 136$	26. $\log _{6} \frac{1}{36}$	

COMMON LOGARITHM	A logarithm with base 10 is called a common logarithm and can be written without the base.	
EVALUATING LOGARITHMS	Directions: Use your knowledge of exponents to evaluate the following logarithms.	
	$\begin{array}{r} \text { 13. } \log _{7} 49 \\ 7^{x}=49 \\ x=2 \end{array}$	$\begin{array}{r} \text { 14. } \log _{3} 27 \\ 3^{x}=27 \\ x=3 \end{array}$
		$\begin{array}{r} \text { 16. } \log _{12} 1 \\ 12^{x}=1 \\ x=0 \end{array}$
	$\begin{aligned} & \text { 17. } \log _{2} 64 \\ & 2^{x}=64 \\ & x=6 \end{aligned}$	$\text { 18. } \begin{gathered} \log _{3} 243 \\ 3^{x}=243 \\ x=5 \end{gathered}$
	$\begin{aligned} & \text { 19. } \log _{9} \frac{1}{81} \\ & 9^{x}=\frac{1}{81} \quad x=-2 \end{aligned}$	$\begin{aligned} & \text { 20. } \log _{64} 4 \\ & 64^{x}=4 \\ & x=1 / 3 \end{aligned}$
CHANGE OF BASE FORMULA	$\begin{aligned} & \text { Some logarithms are not as easy to } \\ & \text { evalute as those above, and will require } \\ & \text { the change of base formula. } \end{aligned} \log _{b} a=\frac{\log a}{\log b}$	
	Directions: Evalute each log using the change of base formula.	
	$\text { 21. } \frac{\log _{16} 64}{\log 64} \log 16 \quad=1.5$	$\text { 22. } \frac{\log _{8} 32}{\log 32}=1 . \overline{6}$
	$\begin{aligned} & \text { 23. } \log _{2} 54 \\ & \frac{\log 54}{\log 2}=5.7549 \end{aligned}$	$\begin{aligned} & \text { 24. } \log _{10} 294 \\ & \frac{\log 294}{\log 10}=2.4683 \end{aligned}$
	$\begin{aligned} & \text { 25. } \log _{4} 136 \\ & \frac{\log 136}{\log 4}=3.5437 \end{aligned}$	$\begin{aligned} & \text { 26. } \log _{6} \frac{1}{36} \\ & \frac{\log \frac{1}{36}}{\log 6}=-2 \end{aligned}$

Name: \qquad Unit 7: Exponential \& Logarithmic Functions \qquad
Date: \qquad Bell: \qquad Homework 3: Intro to Logarithms

Directions: Write each equation in exponential form.

1. $\log _{2} 128=7$	2. $\log _{8} 64=2$	3. $\log _{3} \frac{1}{27}=-3$
Directions: Write each equation in logarithmic form.		
4. $4^{4}=256$	5. $8^{3}=512$	6. $27^{\frac{2}{3}}=9$

Directions: Evaluate each logarithm. Use the change of base formula when necessary.

7. $\log _{6} 36$	8. $\log _{2} 32$	9. $\log _{4} 64$
10. $\log _{3} 81$	11. $\log _{100} 10$	12. $\log _{7} \frac{1}{7}$
13. $\log _{18} 1$	14. $\log _{2} \frac{1}{16}$	
16. $\log _{16} 8$		15. $\log ^{2} 1000$
19. $\log _{7} 35$	17. $\log _{243} 27$	18. $\log _{3} 92$

Name: \qquad Unit 7: Exponential \& Logarithmic Functions \square
Date: \qquad Bell: \qquad Homework 3: Intro to Logarithms

Directions: Write each equation in exponential form.

Directions: Evaluate each logarithm. Use the change of base formula when necessary.

Putting it All Together!

	Directions: Rewrite as a single logarithm. Simplify if possible.	
	19. $2 \cdot \log 6-\log 9$ 20. $4 \cdot \log _{4} a+2 \cdot \log _{4} b$	
	21. $7 \cdot \log _{4} u-3 \cdot \log _{4} v^{2}$	22. $\log _{2} 15+\log _{2} 4-\log _{2} 6$
	23. $\log _{3} 4+\log _{3} y+\frac{1}{2} \cdot \log _{3} 49$	24. $\frac{1}{3}\left(\log _{5} 8+\log _{5} 27\right)-\log _{5} 3$
	25. $3 \cdot \log _{2} 4-\log _{2} 32$	26. $2 \cdot \log 6-\frac{1}{4} \cdot \log 16+\log 3$
	Directions: Expand each logarithm.	
	27. $\log _{6}\left(x y z^{4}\right)$	28. $\log _{4}\left(\frac{a^{9}}{b}\right)$
	29. $\log _{7}\left(q^{4} r^{2}\right)^{2}$	30. $\log _{2}\left(\frac{y}{z^{5}}\right)^{2}$
	31. $\log \sqrt{7 x^{3}}$	32. $\log _{3} \sqrt[4]{m^{5} n^{2}}$

Putting it All Together!		
	$\begin{aligned} & \text { Directions: Rewrite as a single logarithm. Si } \\ & \text { 19. 2. } \log 6-\log 9 \\ & \quad \log \frac{6^{2}}{9}=\log \frac{36}{9}=\log 4 \end{aligned}$	$\begin{aligned} & \log _{4} a^{4}+\log _{4} b^{2} \\ & \log _{4} a^{4} b^{2} \end{aligned}$
	$\begin{gathered} \text { 21. 7. } \log _{4} u-3 \cdot \log _{4} v^{2} \\ \log _{4} u^{7} \cdot \log _{4} v^{6} \\ \log _{4} \frac{u^{7}}{v^{6}} \end{gathered}$	$\begin{gathered} 22 . \log _{2} 5+\log _{2} 4-\log 266 \\ \log _{2} \frac{5 \cdot 4}{6} \\ \log _{2} 10 \end{gathered}$
	23. $\begin{aligned} & \log _{3} 4+\log _{3} y+\frac{1}{2} \log _{3} 49 \\ & \log _{3} 4 \cdot y \cdot 49^{\prime 2} \\ & \log _{3} 4 \cdot y \cdot 7=\log _{3} 28 y \end{aligned}$	24. $\frac{1}{3}\left(\log _{5} 8+\log _{5} 27\right)-\log _{5} 3$ $\begin{aligned} \log _{5} \frac{8^{1 / 3} \cdot 27^{7 / 3}}{3} & =\log _{5} \frac{2 \cdot 3}{3} \\ & =\sqrt{\log _{5} 2} \end{aligned}$
	$\begin{aligned} & 25.3 \cdot \log _{2} 4-\log _{32} 32 \\ & \log _{2} \frac{4^{3}}{32}=\log _{2} \frac{64}{32} \\ &=\log _{2} 2 \end{aligned}$	$\begin{aligned} & \text { 26.2 } 2 \cdot \log 6-\frac{1}{4} \cdot \log 16+\log 3 \\ & \log _{\frac{6^{2}}{16^{44} \cdot 3}}=\log \frac{36}{6}=\log 6 \end{aligned}$
N	Directions: Expand each logarithm 27. $\log _{8}\left(x y z^{4}\right)$ $\begin{aligned} & \log _{6} x+\log _{6} y+\log _{6} z^{4} \\ & \log _{6} x+\log _{6} y+4 \log _{6} z \end{aligned}$	$\begin{aligned} & \text { 28. } \log _{9}\left(\frac{a^{9}}{b}\right)^{2}-\log _{4} b \\ & \log _{4} a-\log _{4} a-\log _{4} b \end{aligned}$
$\underset{i}{2}$	$\begin{aligned} & \text { 29. } \log _{1}\left(q^{4} r^{2}\right)^{2} \\ & 2\left(\log _{7} q^{4}+\log _{7} r^{2}\right) \\ & 2\left(4 \cdot \log _{9} 9+2 \log _{7} r\right)=8 \log _{9} 9+4 \end{aligned}$	$\begin{aligned} 30 \log _{2}\left(\frac{y}{z^{2}}\right)^{2} & =2\left(\log _{2} y-\log _{2} z^{5}\right) \\ & =2\left(\log _{2} y-5 \log _{2} z\right) \\ & =2 \log _{2} y-10 \log _{2} z \end{aligned}$
$\begin{aligned} & \frac{2}{x} \\ & \hline \end{aligned}$	$\text { 31. } \begin{aligned} \log \sqrt{7^{3}} & \left.=1 / 2 \log 7+\log x^{3}\right) \\ & =1 / 2(\log 7+3 \log x) \\ & =\frac{1}{2} \log 7+\frac{3}{2} \log x \end{aligned}$	$\begin{aligned} & 32 \log _{3}^{\sqrt[3]{m^{3} n^{2}}}=\frac{1}{4}\left(\log _{3} m^{5}+\log _{3} n^{2}\right) \\ & =\frac{4}{4}\left(5 \log _{3} m+2 \log _{3} n\right) \\ & =\frac{5}{4} \log _{3} m+\frac{1}{2} \log _{3} n \end{aligned}$

PROPERTIES OF LOGARITHMS

Name	Rule(s)	Exam
BASIC LOGARITHMS	$\log _{b} b=\quad ; \log _{b} 1=$	$\begin{array}{r} \text { Simp } \\ \log _{14} 14= \end{array}$
$\begin{aligned} & \text { PRODUCT } \\ & \text { RULE } \end{aligned}$	$\log _{b}(m \cdot n)=$	$\begin{gathered} \text { Cond } \\ \log _{5} 6+ \end{gathered}$
QUOTIENT RULE	$\log _{b}\left(\frac{m}{n}\right)=$	
POWER RULE	$\log _{b} m^{n}=$	Cond $2.10 \mathrm{c}$
CHANGE OF BASE FORMULA	$\log _{b} a=$	
REMEMBER: BASE 10 LOGS ARE COMMON LOGS AND WRITTEN ${ }^{\prime}$		

GRAPHIC ORGANIZER

Name	Rule(s)	Example 1	Example 2
BASIC LOGARITHMS	$\log _{b} b=1 ; \log _{b} 1=0$	$\begin{aligned} & \text { Simplify: } \\ & \log _{14} 14=1 \end{aligned}$	$\begin{aligned} & \text { Simplify: } \\ & \log _{3} 1=0 \end{aligned}$
$\begin{aligned} & \text { PRODUCT } \\ & \text { RULE } \end{aligned}$	$\log _{b}(m \cdot n)=\log _{b} m+\log _{b} n$	Condense: $\begin{gathered} \log _{5} 6+\log _{5} 7= \\ \log _{5} 6 \cdot 7 \\ {\left[\log _{5} 42\right.} \end{gathered}$	$\begin{gathered} \text { Expand: } \\ \log _{2} 63= \\ \log _{2} 7.9 \\ \log _{2} 7+\log _{2} 9 \\ \hline \end{gathered}$
QUOTIENT RULE	$\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n$	$\begin{aligned} & \text { Condense: } \\ & \log _{4} 84-\log _{4} 12= \\ & \log _{4} \frac{84}{12}=\log _{4} 7 \end{aligned}$	Expand: $\log \frac{81}{9}=\log 9=$
POWER RULE	$\log _{b} m^{n}=n \cdot \log _{b} m$	Condense: $\begin{aligned} & 2 \cdot \log _{3} 8= \\ & \log _{3} 8^{2}=\log _{3} 644 \end{aligned}$	$\begin{gathered} \text { Expand: } \\ \log _{2} 6^{x-1}= \\ (x-1) \cdot \log _{2} 6 \end{gathered}$
CHANGE OF BASE FORMULA	$\log _{b} a=\frac{\log a}{\log b}$	$\begin{aligned} & \begin{array}{c} \text { Using a common } \\ \text { the expressi } \end{array} \\ & \log _{7} 32=\frac{\log 32}{\log 7} \end{aligned}$	base, evaluate ion below. $=1.7810$
REMEMBER: BASE 10 LOGS ARE COMMON LOGS AND WRITTEN WITHOUT A BASE! ($\log \boldsymbol{x}$)			

Name: \qquad Unit 7: Exponential \& Logarithmic Functions \square
Date: \qquad Bell: \qquad Homework 4: Properties of Logarithms
** This is a 2-page document! **

Directions: Complete each rule.				
PRODUCT RULE	QUOTIENT RULE	POWER RULE		
$\log _{b}(m \cdot n)=$	$\log _{b}\left(\frac{m}{n}\right)=$	$\log _{b} m^{n}=$		
$\log _{b} m+\log _{b} n$	$\log _{b} m-\log _{b} n$	$n \cdot \log _{b} m$		

Directions: Condense each expression into a	e logarithm. Simplify if possible.
$\text { 1. } \log _{7} 9+\log _{7} 4=\log _{7} 9 \cdot 4$	$\begin{aligned} & \text { 2. } \log _{2} 80-\log _{2} 5 \\ & \log _{2} \frac{80}{5}=\log _{2} 16 \end{aligned}$
$\text { 3. } \begin{aligned} & \frac{1}{2} \cdot \log _{3} 81 \\ & \log _{3} 81^{1 / 2}=\log _{3} \sqrt{81} \\ &=\log _{3} 9 \end{aligned}$	$\begin{aligned} & 4.3 \cdot \log _{4} 8-5 \cdot \log _{4} 2 \\ & \log _{4} \frac{8^{3}}{2^{5}}=\log _{4} \frac{512}{32} \\ &=\log _{4} 16 \end{aligned}$
$\begin{aligned} & \text { 5. } 7 \cdot \log _{5} x+3 \cdot \log _{5} y^{4} \\ & \log _{5} x^{7} \cdot y^{12} \\ &= \log _{5} x^{7} y^{12} \end{aligned}$	$\begin{aligned} & \text { 6. } \log _{3} a^{7}+\left(\log _{3} a^{4}-2 \cdot \log _{3} b\right) \\ & \log _{3} a^{7} \cdot \frac{a^{4}}{b^{2}}=\log _{3} \frac{a^{4}}{b^{2}} \end{aligned}$
$\text { 7. } \begin{aligned} & \log _{4} x^{7}-\log _{4} x^{2}+4 \cdot \log _{4} x^{3} \\ & \log _{4} \frac{x^{7}}{x^{2}} \cdot x^{12}=\log _{4} \frac{x^{19}}{x^{2}} \\ &=\log _{4} x^{17} \end{aligned}$	$\text { 8. } \begin{aligned} & \frac{1}{2}\left(\log _{6} 45-\log _{6} 5\right)+\log _{6} 12 \\ & \log _{6}\left(\frac{45}{5}\right)^{1 / 2} \cdot 12 \\ = & \log _{6} 9^{1 / 2} \cdot 12 \\ = & \log _{6} 3 \cdot 12=\log _{6} 36 \end{aligned}$

Directions: Condense, then use the change of base formula to evaluate the logarithm.

	$\begin{aligned} & 10.2 \cdot \log _{3} 8-4 \cdot \log _{3} 2 \\ & \log _{3} \frac{8^{2}}{2^{4}} \\ & \log _{3} \frac{64}{16} \\ & \log _{3} 4 \end{aligned}, \frac{\log ^{4} 4}{\log 3}=1.2619$
$\begin{aligned} & \text { 11. } \frac{1}{3} \cdot \log _{4} 8+\log _{4} 15 \\ & \log _{4} 8^{1 / 3} \cdot 15 \\ & \log _{4} 2 \cdot 15 \\ & \log _{4} 30 \end{aligned} \rightarrow \frac{\log 30}{\log _{4} 4}=2.4534$	$\begin{aligned} & 12 . \log _{2} 27+\log _{2} 4-2 \cdot \log _{2} 3 \\ & \log _{2} \frac{27 \cdot 4}{3^{2}} \\ & \log _{2} \frac{108}{9} \\ & \log _{2} 12 \end{aligned} \rightarrow \frac{\log 12}{\log 2}=3.5850$

Directions: Expand each expression.	
$\text { 13. } \log _{8}\left(m n^{2}\right)$	$\text { 14. } \log \left(\frac{x^{9}}{y^{4}}\right)$
$\begin{aligned} & \text { 15. } \log _{2}\left(a^{5} b^{2}\right)^{3} \\ & \log _{2}\left(a^{15} b^{6}\right) \\ & 15 \log _{2} a+6 \log _{2} b \end{aligned}$	$\begin{aligned} & \text { 16. } \log \left(\frac{p^{4}}{q^{7}}\right)^{2} \\ & \log \frac{p^{8}}{q^{14}} \\ & =\log p-14 \log q \end{aligned}$
$\begin{aligned} & \text { 17. } \log _{5} \sqrt{a^{7} b} \\ & \log _{5} a^{7 / 2} b^{1 / 2} \\ & \frac{7}{2} \log _{5} a+\frac{1}{2} \log _{5} b \end{aligned}$	$\begin{aligned} & \text { 18. } \log _{4} \sqrt[3]{c^{2} d^{15}} \\ & \log _{4} c^{2 / 3} d^{5} \\ & \frac{2}{3} \log _{4} c+5 \log _{4} d \end{aligned}$

