A Few More Things for the Test and then Measures of Central Tendency and Spread.

Stem and Leaf Plots

- Displays the distribution of the data while maintaining the actual data values.
- Each data value is split into a stem and a leaf.
 - Example: The height 71" can be split as stem = 7 and leaf = 1

PROCEDURE

How to make a stem-and-leaf display

- 1. Divide the digits of each data value into two parts. The leftmost part is called the *stem* while the rightmost part is called the *leaf*.
- 2. Align all the stems in a vertical column from smallest to largest. Draw a vertical line to the right of all the stems.
- 3. Place all the leaves with the same stem on the same row as the stem, and arrange the leaves in increasing order.
- 4. Use a label to indicate the magnitude of the numbers in the display. We include the decimal position in the label rather than with the stems or leaves.

Stem and Leaf Plot Example

 Below are the points scored by the winning basketball team for the past 35 championship games.

132	118	124	109	104	101	125	83	99
131	98	125	97	106	112	92	120	103
111	117	135	143	112	112	116	106	117
119	110	105	128	112	126	105	102	

Stem and Leaf Plot Example

- We can use the first two digits of each score as the stem.
- We can use the third digit of each score as the leaf.

_	Score = 125	Stem = 12	Leaf = 5
_	Score = 83	Stem = 8 (or 08)	Leaf = 3

Winning Scores of Conference Basketball Championship Games

08 3 represents 083 or 83 points												
08 09 10 11	3											
09	2	7	8	9								
10	1	2	3	4	5	5	6	6	9			
11	0	1	2	2	2	2	6	7	7	8	9	
12 13 14	0	4	5	5	6	8						
13	1	2	5									
14	3											

Notation

The population size is denoted *N*.

The sample size is denoted *n*.

Mean Sample mean $= \overline{x} = \frac{\Sigma x}{n}$ • Read "*x-bar*" Population mean $= \mu = \frac{\Sigma x}{N}$ • Read "*mu*"

Mean Example

- Seven light bulbs are measured to see how long they last (in hours).
 - {1, 180, 192, 194, 196, 221, 237}

$$\overline{x} = \frac{\sum x}{n} = \frac{1221}{7} = 174.43$$

You should have done this with the sub!

INVESTIGATION 2		EFFECTS OF OUTLIERS					
We have seen that an outlier or extreme value is a value which is much greater than, or much less than, the other values.							
Your task is to examine the effect of	an outlier on the three m	easures of central tendency.					
What to do:							
1 Consider the set of data: 4, 5,	6, 6, 6, 7, 7, 8, 9, 10. Ca	lculate:					
a the mean	b the mode	c the median.					
2 We now introduce the extreme 4, 5, 6, 6, 6, 7, 7, 8, 9, 10, 100.		he data set is now:					
a the mean	b the mode	c the median.					
3 Comment on the effect that the	extreme value has on:						
a the mean	b the mode	c the median.					
4 Which of the three measures of central tendency is most affected by the inclusion of an outlier?							
5 Discuss with your class when i centre of a data set.	t would not be appropria	te to use a particular measure of the					

Resistant Measures of Central Tendency

- A resistant measure will not be affected by extreme values in the data set.
- The mean is not resistant to extreme values.
- The median is resistant to extreme values.

Weighted Average

• At times, we may need to assign more importance to some of the data values.

Weighted Average =
$$\frac{\sum xw}{\sum w}$$

- *x* is a data value.
- *w* is the weight assigned to that value.

Weighted Average Example

In a pageant, the interview is worth 30% and appearance is worth 70%. Find the weighted average for a contestant with an interview score of 90 and an appearance score of 80.

Weighted average = $\frac{0.30(90) + 0.70(80)}{0.30 + 0.70}$ = $\frac{27 + 56}{1.00}$ = 83

Measures of Variation: Range

- Range = Largest value smallest value
- Only two data values are used in the computation, so much of the information in the data is lost.

Measures of Variation – Standard Deviation

- The standard deviation and variance measure the spread of the distribution around the mean of the data.
- The formulae for calculating the standard deviation and variance are slightly different if we are dealing with a population or a sample.

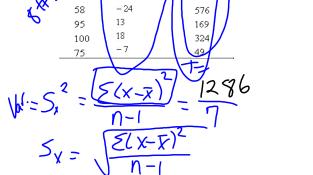
Finishing standard deviation from last class.

Finish stuff and SD and Grouped Data and 5 number Summary

Measures of Variation

<u>Standard deviation-</u> How much the data varies from the mean.

EX: a sample of 8 grades were taken randomly from a class. They were as follows: 72, 82, 84, 90, 58, 95, 100, 75 = Shm $= \underline{\Sigma x}$ 656 = = 82Variance х 72 72 - 82 = -1082 0 Û 84 2 4 90 8 64 - 24



Calcluating a Sample Standard Deviation

- 1) Calculate the mean of the sample.
- 2) Subtract each data value from the mean (these are the deviations).
- 3) Square these terms (each deviation).
- 4) Add up the squared deviations.
- 5) Divide the sum by *n*-1; this is the sample variance.
- 6) Take the square root of the sample variance to obtain the sample standard deviation.

Another Standard Deviation Example

	Column I x	Column II $x - \overline{x}$	$\frac{\text{Column III}}{(x - \overline{x})^2}$	
	2	2 - 6 = -4	$(-4)^2 = 16$	
	3	3 - 6 = -3	$(-3)^2 = 9$	
	3	3 - 6 = -3	$(-3)^2 = 9$	
	8	8 - 6 = 2	$(2)^2 = 4$	
	10	10 - 6 = 4	$(4)^2 = 16$	
	10	10 - 6 = 4	$(4)^2 = 16$	
_	$\Sigma x = 36$		$\overline{\Sigma(x-\overline{x})^2}=70$	
Thus, <i>s</i> ² =	$\frac{70}{n-1} = \frac{70}{5} = 14$	And $s = \sqrt{14}$	= 3.742	

Population Variance and Standard Deviation

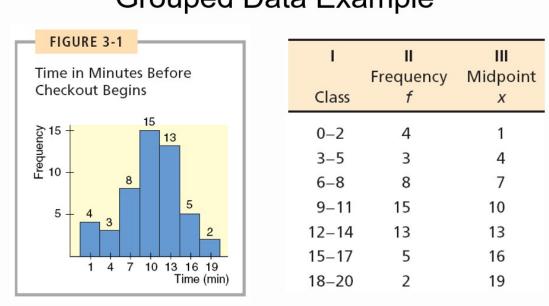
 When dealing with the entire population, rather than a sample, we will divide the sum of squareddeviations by *N*, the entire population size. **Population Variance and Standard Deviation**

Population Variance =
$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

Population Standard Deviation =
$$\sigma$$
 = $\sqrt{\sigma^2}$

Grouped Data

 Sometimes, we wish to compute the mean and standard deviation of grouped data.



Grouped Data Example

Grouped Data Example

- 1) Make a frequency table.
- 2) Compute the midpoint, call it *x*.
- 3) Count the number of entries in each class, call that *f*.
- 4) Add the number of entries in each class to find *n*.

Grouped Data Example

Sample mean for a frequency distribution

$$\overline{x} = \frac{\sum xf}{n}$$

Sample standard deviation for a frequency distribution (defining formula)

$$s = \sqrt{\frac{\Sigma(x - \overline{x})^2 f}{n - 1}}$$

Grouped Data Example

I	ll Frequency	III Midpoint	IV	V	VI	VII
Class	f	x	xf	$x - \overline{x}$	$(x-\overline{x})^2$	$(x-\overline{x})^2 f$
0–2	4					
3–5	3					
6–8	8					
9-11	15					
12-14	13					
15–17	5					
18–20	2					
	$\Sigma f = 50$					

Grouped Data Example $s = \sqrt{\frac{\Sigma(x - \overline{x})^2 f}{n - 1}}$ $= \sqrt{\frac{\text{Sum of Column VII}}{(\text{Sum of Column II}) - 1}}$ $= \sqrt{\frac{961.40}{50 - 1}} \approx \sqrt{19.62} \approx 4.43$

Study for Test.

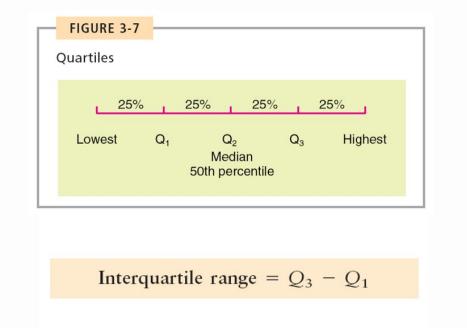
Percentiles

- For whole numbers P, 1 ≤ P ≤ 99, the Pth percentile of a distribution is a value such that P% of the data fall below it, and (100-P)% of the data fall at or above it
 - Example: Your score on the psychology midterm was at the 73rd percentile of your class. Thus, 73% of the scores were below yours, and 27% of the scores were at or above yours

Special Percentiles: Quartiles

- $Q_1 = 25^{\text{th}}$ Percentile
- $Q_2 = 50^{\text{th}}$ Percentile = The Median
- $Q_3 = 75^{\text{th}}$ Percentile

Quartiles and Interquartile Range (IQR)



Computing Quartiles

PROCEDURE

How to compute quartiles

- 1. Order the data from smallest to largest,
- 2. Find the median. This is the 2nd quartile.
- 3. The first quartile Q_1 is then the median of the lower half of the data; that is, it is the median of the data falling *below* the Q_2 position (and not including Q_2).
- 4. The third quartile Q_3 is the median of the upper half of the data; that is, it is the median of the data falling *above* the Q_2 position (and not including Q_2).

Quartiles Example

• The calorie counts of 22 vanilla ice cream bars were measured and ordered:

111	131	147	151	151	182
182	190	197	201	209	234
286	294	295	310	319	342
353	377	377	439		

• Median = (209 + 234) / 2 = 221.5

- Q₁ = 182
- $Q_3 = 319$
- IQR = 319 182 = 137

Five Number Summary

- A listing of the following statistics:
 Minimum, Q₁, Median, Q₃, Maximum
- For the ice cream calories example:
 111, 182, 221.5, 319, 439

Box-and-Whisker Plot

 We can represent the five-number summary graphically by creating a boxand-whisker plot.

Box-and-Whisker Plot Construction

PROCEDURE

How to make a box-and-whisker plot

- 1. Draw a vertical scale to include the lowest and highest data values.
- 2. To the right of the scale draw a box from Q_1 to Q_3 .
- 3. Include a solid line through the box at the median level.
- 4. Draw solid lines, called *whiskers*, from Q_1 to the lowest value and from Q_3 to the highest value.

