QUESTION 1

(a) (i) F
(A1)
(ii) T
(A1)
(iii) F
(A1)
(iv) F
(A1)

$$
(C 4)
$$

(b) $\mathrm{IQR}=6-4$
(M1)

Note: Award (M1) for identifying correct quartiles.

$$
\begin{equation*}
\mathrm{IQR}=2 \tag{C2}
\end{equation*}
$$

$$
(A 1)(\mathbf{f t})
$$

QUESTION 2

(a) If the sun is shining then I will go swimming.
(A1)(A1)
(C2)
Note: Award (A1) for "if...then" and (A1) for correct order.
(b) Either the sun is not shining or I will go swimming. (A1)(A1)

Note: Award (A1) for both correct statements and (A1) for "either" "...or".
(c)

p	q	$p \Rightarrow q$	$\neg p$	$\neg p \vee q$
T	T	T	\mathbf{F}	T
T	F	F	\mathbf{F}	F
F	T	T	\mathbf{T}	T
F	F	T	\mathbf{T}	T

(A1)
(d) They are (logically) equivalent.
(A1)
(C1)
Note: Do not accept any other answers.

QUESTION 3

(a) $u_{21}=24+(21-1)(16)$
(M1)(A1)

Note: Award (M1) for correct substituted formula, (A1) for correct substitutions.

$$
\begin{equation*}
u_{21}=344 \tag{A1}
\end{equation*}
$$

(b) $\quad S_{31}=\frac{31}{2}[2(24)+(31-1)(16)]$
(M1)(A1)(ft)

Note: Award (M1) for correct substituted formula, (A1)(ft)for correct substitutions. (ft) from their value for d.
$S_{31}=8184 \quad$ (A1)(ft)

QUESTION 4

(a) 6

OR
$(0,6)$
(A1)
(C1)
(b) $\frac{(2-5)}{(8-2)}$

Note: Award (M1) for substitution in gradient formula.

$$
\begin{equation*}
=-\frac{1}{2} \tag{C2}
\end{equation*}
$$

(c) Angle clearly identified.
(A1)
(d) $\tan \theta=\frac{1}{2}$ (or equivalent fraction) (M1)
$\theta=26.6^{\circ}$
(A1)(ft)

Note: (ft) from (b)
Accept alternative correct trigonometrical methods.

QUESTION 5

(a) $(x-2)(x-4)$
(A1)(A1)
(b) $\quad x=2, x=4$
(A1)(ft)(A1)(ft)
(c) $\quad x=0.807, x=6.19$
(A1)(A1)

Note: Award maximum of $(\boldsymbol{A O})(\boldsymbol{A} 1)$ if coordinate pairs given.
OR
(M1) for an attempt to solve $x^{2}-7 x+5=0$ via formula with correct values substituted.
$x=\frac{7 \pm \sqrt{29}}{2}$

QUESTION 6

(a) $(3-1)(4-1)$
(M1)
$=6$
(A1)
(b) The preferred type of drink is independent of age.
(A1)
Note: For independent accept "not associated" but do not accept "not related" or "not correlated"
(c) $12.592(12.6)$
(A1)
(d) Reject null hypothesis as critical value $<\chi_{\text {calc }}^{2}$
(A1)(R1)(ft)
Note: (ft) from their value in (c).
OR
Reject null hypothesis as p-value <0.05
(A1)(R1)
Notes: Do not award (A1)(RO).
Award the (R1) for comparison of correct values.

QUESTION 7

(a) $x=3$
(A1)(A1)

> (C2)

Notes: Award (A1) for " $x=$ " (A1) for 3 .
The mark for $x=$ is not awarded unless a constant is seen on the other side of the equation.
(b) (3,-14) (Accept $x=3, y=-14) \quad(A 1)(f t)(A 1)$

Note: Award $(\boldsymbol{A 1})(\boldsymbol{A O})$ for missing coordinate brackets.
(c) $y \geq-14$
(A1)(A1)(ft)

Notes: Award (A1) for $y \geq$, (A1)(ft) for -14 .
Accept alternative notation for intervals.

QUESTION 8 Financial penalty (FP) applies in parts (b) and (c)

(a) $r=\frac{8320}{8000}$ (or equivalent)
(MI)

Note: Award (M1) for dividing correct terms.
$r=1.04$
(A1)

Notes: In (b) and (c) (ft) from candidate's r.
Allow lists, graphs etc. as working in (b) and (c).
(b) Fees $=8000(1.04)^{6}$
(M1)
Note: Award (M1) for correct substitution into correct formula.
(FP) Fees $=10122.55$ USD (USD not required)
(A1)(ft)
Note: Special exception to the note above.
Award maximum of $(\mathbf{M 1})(\boldsymbol{A O})$ if 5 is used as the power.
(c) Total $=\frac{8000\left(1.04^{8}-1\right)}{1.04-1}$
(M1)

Notes: Award (M1) for correct substitution into correct formula.
Give full credit for solution by lists.
(FP)
Total $=73713.81$ USD (USD not required)
(A1)(ft)
(C2)

QUESTION 9

(a) 180°
(b) (i) $\quad a=3$
(ii) $\quad b=2$
(iii) $c=1$
(c) 2
Notes: Award (M1) for line at $y=3$ (with any domain).
Accept some indication of intersection seen on graph.
Award (M1)(A0) if solutions given ($x=201$ and $x=249$).
(A1)
(A1)
(A1)
(C1)
(C3)
(M1)(A1)

QUESTION 10

(a) $\frac{\sin \mathrm{ABC}}{13.4}=\frac{\sin 30^{\circ}}{6.7}$
(M1)(A1)

Note: Award (M1) for correct substituted formula, (A1) for correct substitution.

$$
\begin{array}{lr}
\mathrm{ABC}=90^{\circ} \\
\mathrm{ACB}=60^{\circ} & (\text { A1 }) \\
(\text { A1) })(\mathrm{ft}) \tag{C4}
\end{array}
$$

Note: Radians give no solution, award maximum (M1)(A1)(AO).
(b) $\frac{29-30}{30} \times 100$
(M1)

Note: Award (M1) for correct substitution into correct formula.

$$
\begin{equation*}
\% \text { error }=-3.33 \% \tag{A1}
\end{equation*}
$$

Notes: Percentage symbol not required. Accept positive answer.

QUESTION 11

(a) $\frac{4}{24}\left(\frac{1}{6}, 0.167,16.7 \%\right)$
(A1)(A1)

Note: Award (A1) for numerator, (A1) for denominator.
(b) $\frac{7}{24} \quad(0.292,29.2 \%) \quad$ (A1)(A1)(ft)

Note: Award (A1)(ft) from the denominator used in (a).
(c) $\frac{3}{7} \quad(0.429,42.9 \%)$
$(A 1)(A 1)(f t)$

Note: Award (A1) for numerator (A1)(ft) for denominator, (ft) from their numerator in (b).

QUESTION 12

(a) $\quad 446.25=\frac{C \times 2.5 \times 5}{100}$
(M1)

Note: Award (M1) for the simple interest formula with values from question.

$$
\begin{equation*}
C=3570 \mathrm{AUD} \tag{A1}
\end{equation*}
$$

(C2)
(b) $\quad 446.25=5000\left(1+\frac{2.5}{2(100)}\right)^{2 n}-5000$
(M1)(A1)

Notes: Award (M1) for substitution into compound interest formula. Award (A1) for correct values.

$$
\begin{align*}
5446.25 & =5000\left(1+\frac{2.5}{2(100)}\right)^{2 n} \tag{A1}\\
n & =3.44 \\
n & =3.5 \tag{A1}
\end{align*}
$$

OR
$5446.25=5000(1.0125)^{2 n}$
(A1)(M1)(A1)
Notes: Award (A1) for 5446.25 seen.
Award (M1) for substitution into compound interest formula.
Award (A1) for correct values.
$n=3.44$ years
3.5 years required

Notes: For incorrect substitution into compound interest formula award at most $(M 1)(A 0)(A 1)(A 0)$
Award (A3) for 3.44 seen without working.
Allow solution by lists. In this case
Award (A1) for half year rate 1.25% seen.
(A1) for 5446.25 seen
(M1) for at least 2 correct uses of multiplication by 1.0125
$5000 \times 1.0125=5062.5$ and $5062.5 \times 1.0125=5125.78125$
(A1) $n=3.5$
If yearly rate used then award $(\mathbf{A 0})(\boldsymbol{A 1})(\mathbf{M 1})(\mathbf{A 0})$

QUESTION 13 Unit penalty (UP) applies in parts (a) and (b)
(a) Volume of tennis ball $=\frac{4}{3} \pi 3.15^{3}$

Note: Award (M1) for correct substitution into correct formula.
(UP) \quad Volume of tennis ball $=131 \mathrm{~cm}^{3}$
(A1)
(b) Volume of empty space $=\pi 3.2^{2} \times 26-4 \times 130.9$
(M1)(M1)(M1)

Note: Award (M1) for correct substitution into cylinder formula, (M1) $4 \times$ their (a), (M1) for subtracting appropriate volumes.
$(\boldsymbol{U P}) \quad$ Volume of empty space $=313 \mathrm{~cm}^{3}$ (A1)(ft)

Note: Accept $312 \mathrm{~cm}^{3}$ with use of 131.

QUESTION 14

(a) $p+q=47$
$4 p+q=53$
(A1)
(b) Reasonable attempt to solve their equations
$p=2, q=45$
(A1)
Note: Accept only the answers $p=2, q=45$.
(c) $\begin{aligned} C & =2 \times 2^{0.5(10)}+45 \\ C & =109\end{aligned} \quad$ (M1)

Note: Award (M1) for substitution of 10 into the formula with their values of p and q.

QUESTION 15

(a) $y=13.5 x+4.5$
(M1)
Note: Award (M1) for $13.5 x$ seen.
gradient $=13.5$
(A1)
(b) $4 x^{3}$
(A1)
(c) (i) $4 x^{3}=13.5$

Note: Award (M1) for equating their answers to (a) and (b).

$$
x=1.5
$$

(A1)(ft)
(ii) $\frac{81}{16}(5.0625,5.06) \quad$ (A1)(ft)

Note: Award (A1)(ft) for substitution of their (c)(i) into x^{4} with working seen.

